
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2001

Statistical modeling and design for CMM-type data
locating known two-dimensional geometries
Dewi Rahardja
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rahardja, Dewi, "Statistical modeling and design for CMM-type data locating known two-dimensional geometries " (2001).
Retrospective Theses and Dissertations. 1077.
https://lib.dr.iastate.edu/rtd/1077

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1077?utm_source=lib.dr.iastate.edu%2Frtd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

www.manaraa.com

www.manaraa.com

Statistical modeling and design for CMM-type data locating known two-dimensional

geometries

by

Dewi Rahardja

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Major Professor: Stephen B.Vardeman

Iowa State University

Ames, Iowa

2001

www.manaraa.com

UMI Number: 3016743

UMI
UMI Microform 3016743

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Dewi Rahardja

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

For the Graduate College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. LITERATURE REVIEW 4

CHAPTER 3. MODELS AND METHODS 7

3.1. Statistical Modeling 7

3.2. Statistical Inference 9

3.3. Design Figure of Merit 10

3.4. Computational Methods 12

3.4.1. Exhaustive Computation 12

3.4.2. One-at-a-time Search Heuristic (ONE) 13

3.4.3. Genetic Algorithm (GA) 14

3.4.4. Comparison of the 2 algorithms (ONE versus GA) 16

3.4.5. Mean "Best" Average Weighted Trace versus Computation Resource 17

3.5. An Example Case 18

CHAPTER 4. RESULTS AND DISCUSSION 22

4.1. Choice of Constants in the Figure of Merit 23

4.2. Exhaustive Computation 28

4.3. Search Heuristics (ONE and GA) 29

CHAPTER 5. CONCLUSIONS 32

5.1. Summary 32

5.2. Recommendations 33

5.3. Future Research 33

APPENDIX A. FORMULAS 35

www.manaraa.com

iv

APPENDIX B. COMPUTER PROGRAMS 47

APPENDIX C. COMPUTER OUTPUTS 69

APPENDIX D. FIGURES PORTRAYING SOME DESIGNS 72

APPENDIX E. GRAPHS (ONE VERSUS GA) 96

BIBLIOGRAPHY 101

www.manaraa.com

1

Statistical modeling and design for CMM-type data locating known two-dimensional

geometries

Dewi Rahardja

Major Professor: Stephen B.Vardeman
Iowa State University

This research was motivated by a problem from a car-manufacturer that needed to

compare/analyze two hood assembly fixtures. The consistency of the car hood placement

was examined for both fixtures. A "constant width" gap between the hood and the car's body

is preferred. A "wide" gap at one point and a "narrow" gap at another constitutes a bad

quality placement of the car hood, and will affect customer satisfaction.

3-D data were taken using a Coordinate Measuring Machine (CMM) with 12 (fixed)

probe paths to the hood. For each fixture, ten "12-dimensional" vectors were taken and the

original goal was to compare the 2 fixtures and decide which one gives more

consistent/better placement of the hood. As a first step in statistical modeling and analysis

for this type of problem, we consider a 2-dimensional idealization ignoring the 4 "Up-Down"

measurements and replacing the complicated real hood geometry with simple ideal

geometries of approximately the same overall size. Then the data become ten "8-

dimensional" vectors.

A "rough" analysis done by the car-manufacturer analyst was to take ten "8-

dimensional" vectors for both fixtures A and B and make 8 comparisons of sample variances

(one probe path at a time). This ignores geometry effects/physical dependence and answers

the wrong question (how variable are the measurements, versus how variable is hood

placement).

www.manaraa.com

2

In this dissertation, we consider statistical analysis specifically focused on the issue of

"Where is the hood?" (as opposed to "What is the distribution of a Yj ?"). Our main

contribution is in the realm of study planning, where the object is to choose a set of probe

paths that provide optimal precision for estimating the position of a single "hood" placement.

We propose a figure of merit for comparing alternative designs (data collection plans) and

compare several algorithms for optimizing this criterion. Our comparisons of algorithms are

across design sizes, "hood" geometries and nominal locations. We conclude that the design

sizes, geometries, and nominal locations affect the optimum design while the candidate probe

paths doesn't. The paths in an optimum/best design will generally be located closest to the

"extremes" of the object boundary or will be aimed near "corners" of the object.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This work was motivated by a problem from a car-manufacturer that needed to

compare/analyze two hood fixtures. Using both fixtures, placement of car hoods was

performed and the consistency of the placement was examined. A "constant width" gap

between the hood and the car's body is preferred. A "wide" gap at one point and a "narrow"

gap at another constitutes a bad quality placement of the car hood, and will affect customer

satisfaction.

Data were obtained using a Coordinate Measuring Machine (CMM) as shown in

schematic form on Figure 1.1. Indicated on the figure are 12 (fixed) probe paths to the hood.

A datum for any one path is a measurement of where along the path the probe first touches

the hood.

Forward

Figure 1.1. A data point is a "12-dimensional" vector

www.manaraa.com

2

For each fixture, ten "12-dimensional" vectors were obtained and the original goal

was to compare the 2 fixtures and decide which one gives more consistent/better placement

of the car hood. As a first step in statistical modeling and analysis for this type of problem,

consider a 2-dimensional idealization ignoring the "Up-Down" measurements and replacing

the complicated real hood geometry with a rectangle of approximately the same overall

dimensions. Then, the data become ten "8-dimensional" vectors for both fixtures A and B

(see Figure 1.2).

ft-

T
6"

! ,
41"

T
3"

J=_

55.5"

4- 3" —G 3 &|

1 2

Figure 1.2. (2-D Idealization) A data point is an "8- dimensional" vector

www.manaraa.com

3

On Figure 1.2, the arrows numbered 1,...,8 indicate the idealized paths taken by the

CMM probe. In the idealized car (or CMM) coordinate system, a perfectly placed hood has

Y = (Y|, ..., Yg)T = (0, 0, 0, 0, 41, 41, 55.5, 55.5) where Y, is the horizontal or vertical

coordinate where the hood is touched (i.e., 0 horizontal, 0 horizontal, 0 horizontal, 0

horizontal, 41 vertical, 41 vertical, 55.5 horizontal, and 55.5 horizontal).

A "rough" analysis done by the car-manufacturer analyst was to take ten "8-

dimensional" vectors for both fixtures A and B (i.e., nA = 10 vectors Y and ng = 10 vectors

Y) and make 8 comparisons of sample variances (one probe path at a time). This ignores

geometry effects/physical dependence and answers the wrong question (how variable are the

measurements versus how variable is hood placement).

In this dissertation, we consider statistical analyses specifically focused on the issue

of "Where is the hood?" (as opposed to "What is the distribution of a Yj ?"). Our main

contribution is in the realm of study planning, where the object is to choose a set of probe

paths that provide optimal precision for estimating the position of a single "hood" placement.

We propose a figure of merit for comparing alternative designs (data collection plans) and

compare several algorithms for optimizing this criterion. Our comparisons of algorithms are

across design sizes, "hood" geometries and nominal locations.

www.manaraa.com

4

CHAPTER 2. LITERATURE REVIEW

There is a fairly small existing statistical literature concerned with the statistical

analysis of Coordinate Measuring Machine (CMM) data. To our knowledge, nothing has

been done specifically on this problem of study planning for locating known geometries.

What follows here is a short review of the published work closest in spirit to ours.

Dowling, Griffin, Tsui and Zhou (1997) described current practices for assessing

geometric feature conformance to engineering tolerances using CMM data. They mentioned

that the choices of sample design and method of data analysis are fundamentally statistical

problems. Current statistical design methods and techniques for estimating surface (of a

simple geometric feature) errors are very limited and require restrictive assumptions. In the

article, examples involving simple features of 2-dimensional geometries have been used.

Although there are difficulties inspecting even simple shapes, there is also an urgent need for

practical methodologies for complex forms.

Hulting (1997) commented on the Dowling, et al. article and presented a new way of

setting up the problem of fitting geometric models to CMM data that offers advantages over

traditional orthogonal distance fitting.

Wang, Gupta, Hulting and Fussell (1998) (in an article derived from Gupta's

dissertation) illustrated manufactured part modeling and some statistical methods. An

approach to characterizing the geometric variations in aluminum automotive spaceframe

extrusions was presented. In such problems, they argued that it may not be possible to

recover the full set of shape parameters because of measurement and computation

www.manaraa.com

5

limitations. So, a regression procedure was presented to select the most important

parameters.

Hulting (1995) gave an overview of manufactured part modeling work done at Alcoa.

He and his colleagues found that the traditional 3-2-1 method of building a reference frame

lacks robustness because a minimum number of points is used and slight errors in any of the

six points can greatly affect the resulting frame. Further, while the part localization or "best-

fitting" problem has been traditionally viewed as only an optimization problem, he observed

that it is really model-fitting and should be considered from a statistical viewpoint. That is,

confidence intervals for parameters and/or inferences about form errors (i.e., deviations of an

actual manufactured part from design intent) should be obtained. He also mentioned that

continued collaboration between the disciplines of engineering and statistics is necessary for

statistical thinking to become part of the process of collecting and interpreting coordinate

measurement data.

Hulting (1992), looked at doing Gauge R&R studies with multivariate data, in

particular, with CMM data. In order to ensure the quality of manufactured parts, the location

of features (e.g. holes, slots, surface points) on parts (e.g. subassemblies of automobiles or

planes, electronic packages, etc.) are checked for conformance to specifications during

manufacturing. These checks involve comparing 3-dimensional (x,y,z) measured coordinates

to nominal (design) values. The successful control of the manufacturing process depends, in

part, on the validity of these measurements. He argued that a method is needed for analyzing

multivariate measurement data to characterize components of variation in observed

measurements. Coordinate measurement systems are commonly used in industry, and there

has been little work concerning the analysis of data arising from these devices. In his paper,

www.manaraa.com

6

a multivariate extension of the traditional univariate method for assessing measurement

variation is proposed. The method provides a more complete characterization of

measurement system performance than the traditional univariate approach.

www.manaraa.com

7

CHAPTER 3. MODELS AND METHODS

As a first step in developing methods for the statistical planning of CMM studies, we

limit our discussion to a 2-dimensional idealization. The design considerations here are for

estimation in the simple problem of locating a fixed, known geometry. We investigate how

shape and positioning affect optimal design of data collection (which and how many probe

paths to employ) and the performance of algorithms intended to identify the optimal designs.

This chapter presents the basic statistical modeling and inference we propose for part

location, the scope of this dissertation, a design figure of merit, and some computational

methods for optimization of the design.

3.1. STATISTICAL MODELING

In this dissertation, we restrict our attention to data collected using probe paths

parallel to CMM coordinate axes. And henceforth, for a fixed ideal 2-dimensional object

(with its own coordinate system located at the geometry's center of mass), use the following

notation:

u x (horizontal) translation (from the ideal) of the origin of the object's

coordinate system,

v y (vertical) translation (from the ideal) of the origin of the object's

coordinate system,

6 angle of rotation (from the ideal) of the object's coordinate system,

J3 = (u, v, 8)t fixed but unknown parameter vector describing actual location,

www.manaraa.com

8

k number of CMM measurements to be made,

Y a k-dimensional response vector (data taken from the CMM)

indicating the points at which the probe first touches the object,

X a corresponding explanatory variable indicating the k paths taken by

the probe (indicates direction of approach, i.e. from top, from bottom,

from left or from right and the "level" of that approach),

f() a (vector of) shape dependent functions,

m total number of (fixed) candidate probe-paths,

<r repeatability error variance,

g vector of measurement errors; g ~ Nk (0, c2 Ik).

Supposing the object to be a rigid body, with no measurement error,

Y = f(X; fi)

for an appropriate f. To get a statistical version of this model, measurement errors are added

and the model becomes

Y = _f(X;m + e (3.1)

where Y, f, and g are kx 1, X is kx2 and J3 is a 3x 1 fixed but unknown parameter vector. This

is the model used in our analysis. We note however, that potentially important

generalizations of (3.1) exist. For example, one might incorporate uncertainty/variability in

realized probe path by letting 8 be a vector of k random deviations from the

nominal/intended "levels" of approach indicated in X and obtain a model

X = f(X, 8;&) + e

www.manaraa.com

9

for an appropriate f.

3.2 STATISTICAL INFERENCE

Model (3.1) is in the form of a nonlinear regression model. Under the distributional

assumptions already imposed on e and the assumption that f is smooth, standard statistical

theory gives an approximate distribution for the least squares estimator of the parameter

vector J3 = (u, v, 8)T. See Seber and Wild (1989, Chapter 2) for details.

For purposes of this dissertation, we need the approximate variance-covariance

A

matrix of g, the least squares estimator of {3. This depends on the "design" (i.e., k and the

probe paths indicated in X) The approximate distribution of § is MVN (Ji, <r C'1) where C

= FTF, for F an appropriate kx3 matrix of derivatives. That is, think of a single "X" as X =

(S, L) where S is "Side" and L is the "Level". For example, X = (2, 3) might mean "Side 2"

= "left" and "Level 3" = "vertical coordinate = 3." Then f (X, 0) is the horizontal or vertical

coordinate at which a probe following path X first touches the object located as]3. And then

"3f(Xi,g) 3f(Xi,g) 3f(Xi,&)'

F(§) =
df(Xk,B) df(Xk,B) df(Xk,B)

(3.2)

and one wants "small" matrices C"1 = (FTF)"'. We proceed to propose a figure of merit based

on C '.

www.manaraa.com

10

3.3. DESIGN FIGURE OF MERIT

The objective here is to identify "good" designs. To create a doable problem, we

limit consideration to designs where each "X" belongs to some pre-specified finite set A. A

might consist of (m/4) "equally spaced" paths into each side of a rectangle bounding the

object in nominal position as shown in Figure 3.1.

For a choice of k "X"s, X = (Xi, X:, ... , Xk) is a data collection recipe, a design. For

a fixed 0, computation of C ' is straightforward. But optimization of a function of C"1 for a

single £ begs the question that one doesn't know {3 at the data collection design stage.

Side 3

2(m/4)+l 2(m/4)+2 3 (m/4)

2 (m/4)

Side 2 Side 4

(m/4)+2 3(m/4)+2

(m/4)+l 3(m/4)+l

1 2 (m/4)

Side 1

Figure 3.1. A pre-specified finite set A with (m/4) paths from each of 4 sides
(The rectangle bounds the object in ji = 0 or nominal position)

www.manaraa.com

11

Suppose, however, that one can bound the entries of the vector j), as

u L = - u H < u < u H ,

vL = - vH < v < vH,

6L= -6h < 8 < 6H- (3.3)

(These are a priori constraints on the actual position of the object.) Then considering "high-

medium-low" combinations of these positioning parameters, we can define 27 different

vectors § = (u, v, 6)T and corresponding object positions. (We emphasize that the potential

probe paths in Figure 3.1 are defined in terms of the part coordinate system when the part is

in its nominal (6 = 0) position and are therefore fixed with respect to the CMM coordinate

system.) We then propose as a figure of merit for a design X,

Ave(WT(X)) (3.4)

for WT(X) = 0)|d,(X) + (OzdzQG) + o%d3(X)

where Ave is an average over 27 vectors g as defined by (3.3); and d,, d,, ds are the 3

diagonal elements of C"1; and û)|, g»2, and (03 are non-negative weights. In particular, we

reason that the choice coi = CO2 = I and (1)3 = r2, for r the largest distance from the center of

mass to a point on the boundary of the geometry of interest, is a sensible one. As the dj are

approximate variances of u, v, and 8, this choice penalizes equally misperceptions of the

location of "extreme points" of a geometry traceable to imprecision in estimation of

horizontal translation, vertical translation and rotation of the geometry. This figure of merit

is roughly the average weighted sum of the 3 variances: variance of the estimated horizontal

translation, variance of the estimated vertical translation, and variance of the estimated

www.manaraa.com

12

rotation. Referring to the original goal in Chapter 1, the issue of "Where is the hood?" can be

addressed using this criterion to compare data collection designs.

3.4. COMPUTATIONAL METHODS

3.4.1. Exhaustive Computation

Before resorting to search heuristics, it is sensible to get an idea how "big" a

particular problem is and whether direct enumeration of all possible designs is feasible. We

count the number of different designs (for a given m and k combination). For the purpose of

illustration, consider a small example with m = 4 and k = 4. The design X, = 1, X2 = 2, X3 =

4, X4 = 2 is the same as the design X| = 4, X? = 1, X3 = 2, X4 = 2 and is also the same as the

design Xi = 2, X2 = 2, X3 = 4, X4 = 1, etc. In counting distinct designs, we may therefore

simply count the number of different vectors X with X, < X, < ... < Xk This, for given m

and k is

m m m m
I I I - I i =

i 1=1 i2=il i3=i2 ik=ik-l

For m = 20, and k = 4, using the (3.5) one can count 8,855 different designs; for m = 20 and

k = 8, again using (3.5) one can count 2,222,075 different designs; etc., other counts are

given in Table 3.1. In order to develop an understanding of the complexity of the

Table 3.1 The numbers of designs for various m and k combinations

m

T
i

ll M
 zr

II

0

0
 0

11 M

 k = 20
20 8,855 2,220,075 20,030,010 68,923,264,410
40 123,410 314,457,495 8,217,822,536
80 1,837,620 58,433,559,570 5,085,018,206,136

160 28,342,440 12,655,529,067,060
1,000 41,917,125,250
2,000 668,668,500,500

m + k - 1
k (3.5)

www.manaraa.com

13

enumeration required by an exhaustive search over candidate designs, we wrote a program

(cnt.c) to simply count designs (not evaluate weighted traces) using the looping as indicated

on the left of (3.5). The empty cells in Table 3.1 indicate that even the problem of simply

enumerating designs is too big to handle at present. Hence, direct enumeration of values of

criterion (3.4) for all designs is feasible only for relatively small problems. Some heuristic

algorithms are thus needed to do searches for designs with small values of criterion (3.4) in

"big" problems.

For the purpose of providing a basis of comparison (to an exact optimum) for results

obtained using our heuristics, we do make exhaustive searches for optimal designs in small

problems. Computer programs for the exhaustive searches are in Appendix B.

3.4.2. One-at-a-time Search Heuristic (ONE)

Consider m possible X's (i.e., probe paths), (m/4) corresponding to approach from

each one of 4 directions. Further, suppose that we can afford k measurements. What we will

call a one-at-a-time search heuristic (ONE) does the following. For a single iteration, make a

random choice of X,, X,, ... , Xk.i. Optimize over choices of Xk. Then holding X,, X,, ... ,

Xk-2, Xk fixed, optimize over Xk.|. Then holding X,, X2 Xk-3, Xk-i, Xk fixed, optimize

over Xk-2- Continue until finally, holding X2, X3, ... , Xk fixed, optimize over X,. Then the

final design and the corresponding average weighted trace are recorded.

Typically in practice, several iterations of such an algorithm are made. Here we

repeat the above many times to get many sets of final designs and average weighted traces.

Based on these many average weighted traces, we build a frequency distribution table to

characterize performance of this search heuristic. Its use will be discussed in Sections 3.4.4

www.manaraa.com

14

and 3.4.5. Computer programs for the One-at-a-time (ONE) search heuristic are in Appendix

B.

3.4.3. Genetic Algorithm (GA)

Michalewicz (1996) discusses Genetic Algorithms (GAs) and Evolution Programs

(EPs). We will use a discrete (optimization) version of a genetic algorithm. Since our GA

here does not involve binary code, it might more properly be called an EP. However,

Michalewicz (1996) mentions that it is impossible to draw a clear line between GAs and EPs

and for the sake of using a familiar name, we will use the "GA" terminology.

Our GA operates as follows. Initially, the parameters population size (POPSIZE),

maximum generations (MAXGENS), size of the design (k), number of possible paths (m),

probability of crossover (PXOVER) and probability of mutation (PMUTATION) are chosen.

To initialize a population, some POPSIZE number of k-gene chromosomes (k-point data

collection designs) are set randomly. This population is the set of initial (potential) solutions.

The algorithm then operates on the existing population. In each generation, each

chromosome (design) is evaluated using an evaluation or fitness function which we take to be

the reciprocal of the average weighted trace (3.4). Then relative fitness and cumulative

fitness (for the designs listed in order of fitness) are also computed. Next, in a selection

process, a new population is selected via independent random draws from the probability

distribution defined by the fitness values (i.e., proportional to the relative fitness of the

elements of the current population). Typically, some chromosomes/designs are selected

more than once for inclusion in the next generation. The "best" chromosomes get more

copies, the "average" stay even, and the "worst" die off.

www.manaraa.com

15

Next, a "recombination" operator, crossover, is applied to the

individuals/chromosomes in the new population by considering them one at a time in some

order. The specifics of our crossover algorithm are these. As we consider a chromosome,

we generate a Uniform (0,1) number. If that number is less than PXOVER, the chromosome

under consideration is paired with another randomly selected chromosome from the

population and a single point crossover is done. (A random integer number, pos, is generated

from the uniform distribution on the integers 1 to k-1. The number pos indicates the position

of the crossing point. The genes (i.e., probe paths) listed in the chromosomes (designs) to the

left of this crossing point are swapped between the pair.) Then consideration is turned to the

next chromosome. And so on through the POPSIZE number of chromosomes.

The next operator, mutation, is performed on a gene-by-gene basis across the whole

population. Genes (individual probe paths in a design) are selected for mutation

independently with fixed probability (PMUTATION). The expected number of mutated

genes is then PMUTATE k • POPSIZE.

Following selection, crossover, and mutation, the new population is ready for

evaluation. This evaluation is used to build the probability distribution for the next selection

process. After evaluation, there is finally consideration of the elitist function. This compares

the best chromosome (design) of current generation to the previous generation's best

chromosome. If the best chromosome of the current generation is worse than the best

chromosome of the previous generation, the latter replaces the worst chromosome of the

current population. Hence, this elitist function upgrades the best individual in each

generation. The best chromosome (design) in the final population is the output of the GA

www.manaraa.com

16

heuristic. The number of generations employed depends on the size of problem and

computation resource limitations.

Typically, in practice several iterations of such a GA algorithm are made. Here we

have repeated the GA heuristic above many times to produce many final designs and

corresponding average weighted traces. Again, a frequency distribution table of final best

AWT's is built. The computer programs for the Genetic Algorithm (GA) are in Appendix B.

3.4.4. Comparison of the 2 algorithms (ONE versus GA)

To make fair comparisons of the 2 algorithms, ONE and GA, we need to limit them to

approximately the same computation resources. The computing time associated with random

number generation in the two algorithms is negligible. For a given design, the steps of

calculating the derivatives, computing FTF and inverting it, averaging across the 27 Jî

combinations to get an Average Weighted Trace (AWT) are all the same for ONE and GA.

So essentially, the computational time required by an iteration of either algorithm is simply

proportional to the Number of Average Weighted Traces (# AWT) computed. For n_l

iterations of the ONE algorithm and n_g iterations of the GA algorithm, these are

AWT (ONE) = m • k • n_l (3.6)

and # AWT (GA) = (POPSIZE) • (MAXGENS) • n_g. (3.7)

Comparable (in terms of computing effort) numbers of runs of ONE and GA are then chosen

by setting # AWT (ONE) in (3.6) equal to # AWT (GA) in (3.7). This requires

n_g= ^ n 1. (3.8)
(POPSIZE) (MAXGENS) "

That is, one run of ONE is approximately equivalent to (m • k)/[(POPSIZE) • (MAXGENS)]

runs of GA in terms of computational complexity.

www.manaraa.com

17

3.4.5. Mean "Best" Average Weighted Trace versus Computation Resource

Suppose now that one finds a relative frequency distribution for the final Average

Weighted Trace (AWT) from single applications of either ONE or GA. Let W be the final

AWT from an additional single run through ONE or GA. The (empirical) relative frequency

distribution serves as an approximation of the probability distribution for W. With w, < w2 <

... < Wh the distinct final weighted traces seen, we will use the notation

for the relative frequencies/probabilities.

Now consider the distribution of the best AWT found in n future runs through ONE

or GA. That is, assume W,, W2, ... , Wn are iid with distribution (3.9) and let Zn be the

minimum ofW,, W2, W3,..., Wn. Use the notation

for the probability mass function of Zq. The probabilities q* in (3.10) can be obtained as

follows.

pi = P(W = W |) , p2 = P(W = w2),... , ph = P(W = W h) (3.9)

qi — P(Zn — w,), q2 — P(Zn — w2), ... , qh — P(Zn — w^) (3.10)

qi = P(Z„ = W j)

= P(Zn> W i) - P (Z n > W i + ,) (3.11)

where, P(Zn > W i) = P(W[> W j , W2 > W j , ... , Wn > W i)

= P(W, > W ,) n

= (Pi + Pi+l + •. • + Ph)"- (3.12)

Rearranging (3.11) using (3.12),

qi = (Pi + Pi+l + ... + Ph)n - (Pi+l + Pi+2 + ••• + Ph)"- (3.13)

Now, a useful summary of the distribution described by (3.13) is

www.manaraa.com

18

E(Zn)=l|L, Wi qi. (3.14)

The limit of this expected value in n can be obtained as follows. Using (3.13), it can be seen

that

f 1, if i= 1
lim Qi = \

[0, otherwise

and hence,

l i m E (Z n) = w , . (3 . 1 5)
n—>oo

Using (3.14) as the mean "best" AWT (Average Weighted Trace) found in n runs

through either the ONE or GA heuristic, a graph of E(Zn) versus n can be plotted. To make a

"fair" comparison of the methods, E(Znj) for the ONE heuristic should be compared with

E(Zn_g) for the GA heuristic, where n_g is given by (3.8). (Obviously, (3.15) indicates that

up to the precision provided by the simulations conducted to find the distributions (3.9), for

very large n_l and n_g the algorithm with the smaller value of w, will be preferred.)

3.5. AN EXAMPLE CASE

Before closing this discussion of methods and proceeding to the results (Chapter 4),

we present a more detailed walk-through of an example case. For the sake of demonstration,

we will go through a Triangle Shape, 0° nominal orientation case.

Following the procedure in Appendix A.2, we obtained the necessary (shape-

dependent) functions whose derivatives are needed to compute the derivative matrix (3.2). In

this particular case, there are 6 functions of JJ: fl, f2, ..., f6 that specify the vertical and

horizontal levels at which probe paths first touch the triangle. (As shown in Figure 3.2, "y"

www.manaraa.com

19

Side 3

C (x3, y3)

f3

(Side 4)
Side 2

A (xl, yl)
f2

B (x2. y2)
Side I

Figure 3.2 Triangle Shape, 0° Orientation, Nominal Position (i.e., j3 = 0)

coordinates corresponding to paths from below are specified by fl, "x" coordinates

corresponding to paths from the left are specified by f2 and f3, "y" coordinates corresponding

to paths from above are specified by f4 and f5, and "x" coordinates corresponding to paths

from the right are specified by f6.) A partial derivative symbolized as a partial of "f" in

expression (3.2) is then a partial of one of these functions fl, f2, ..., f6 specified by the probe

path (direction and level) and value of j3. The partial derivatives can be obtained using the

program "der.s" in Appendix B.

Consider the "small" (m, k) case, i.e. , (m, k) = (20, 4). Hence, as in Figure 3.1, we

have m = 20 (fixed) probe paths, A = m/4 = 5 paths for each of the 4 sides. We want to find

the best design subject to these conditions, i.e., we want to locate the k = 4 (possibly non-

distinct) paths from the m = 20 "possible" probe paths, with the ultimate goal of answering

www.manaraa.com

20

the question "Where is the Triangle?" By (3.5), there are 8855 (see Table 3.1) possible

designs.

To be concrete, take one design out of the 8855 different possibilities consisting of

probe paths 6, 1, 11,20 (i.e., X, = 6, X? = 1, X3 = 11, X4 = 20). Using values ul = -0.25

inch, uh = 0.25 inch, vl = -0.25 inch, vh = 0.25 inch, 6l = -0.1 radian, 8h = 0.1 radian, for

F(g) =

For each, we compute

" df2(6, |3) df 2(6, (}) df2(6, j3)

du dv de

and,g) dfl(l,g) dfl(l,§)

du dv de

df4(l 1,(3) df4(l l,g) df 4(11,6)

du dv de

df6(20,g) df6(20,g) df6(20,g)

du dv de

where by the notation fj(X, Ji) we are making explicit the fact that fl, f2, ..., f6 are functions

not only of {3, but also of horizontal or vertical level associated with path X and the fact that

none of the 27 J3's is large enough to change the functions fj relevant for probe paths 6, 1, 11,

and 20. For each of the 27 F(j})'s, C'1 = (FTF)"1 is computed, as is the corresponding WT(X).

Next, Ave(WT(X)) = 0.532119 as in (3.4) is obtained.

Using the same procedure as above, we can calculate the AWT, Ave(WT(X)), for the

remaining 8855 - 1 = 8854 designs. The minimum one(s) correspond to the best design(s).

Through the Exhaustive Computation (see program output in Appendix C), the

best/minimum AWT is found to be Ave(WT(X)) = 0.438142 with the design Xi = 6, X2 = 11,

X3 = 20, X4 = 20 as indicated in Figure 3.3.

www.manaraa.com

21

[IX]
(3X)

Side 3

[2X]
(4X)

Side 2 Side 4

[IX]
(IX)

Side I

Figure 3.3. Best Small/Medium (m, k) Designs for Triangle Shape, 0° Orientation;
Nominal Position (i.e., {3 = 0) of Triangle is Shown

In Figure 3.3. the best designs (Triangle shape, 0° nominal orientation) for small and

medium (m, k) are displayed. The arrows indicate probe paths and black dots represent the

points at which the probe touches the triangle if in nominal position for the k = 4 (and k = 8)

trials. For k = 4, "[IX]" indicates that paths 6 and 11 are used once each and "[2X]" indicates

that path 20 is used twice. For k = 8, "(IX)", "(3X)", and "(4X)" indicate that paths 6, 11 and

20 are used respectively once, three times and four times.

Figures like Figure 3.3 giving optimal designs for other combinations of

geometries/orientations, and small/medium (m, k), are provided in Appendix D.

www.manaraa.com

22

CHAPTER 4. RESULTS AND DISCUSSION

We have applied the methods presented in Chapter 3 to 4 test geometries ("rectangle,"

"triangle," "hood shape," and "parabolas"), 2 nominal orientations for the objects ("0°" and

"45°"), and 3 sets of m and k (small, medium, large). Figures A.l through A.8 in Appendix

A show the eight combinations of geometry and nominal placements. As shown on Figures

1.2 and 3.1, we have restricted attention to 4 types of CMM probe paths: from Side 1, Side 2,

Side 3 and Side 4, on lines parallel to the CMM coordinate axes. In our study, the 3 sets of

"small-medium-large" (m, k) are (20, 4), (20, 8), and (40,16). For the large (m, k)

combination, we could not afford an exhaustive search for an optimum design and can only

apply the ONE and GA algorithms.

Before going on we need to describe more precisely the set of paths indicated in

Figure 3.1. After obtaining the horizontal and vertical (x and y) coordinates of the "extreme"

points (as prescribed in Appendix A) of a test geometry when {3 = 0, the lines forming the

smallest "rectangle" that bounds the ideally placed geometry are then obvious. We then

allow some "margin" on each end of the line segments forming the rectangle and partition the

remainder equally to locate the (m/4) probe paths into each side. If desired, one can print out

(as an option in the program) the exact locations of the equally spaced probe paths. The

"margin" can be changed in the program "con.h". For the "parabolas" shape, the "margin"

was taken to be 13.5 inches. For the other 3 shapes, 0.5 inch was used. Without a "margin"

any probe path on the "extremes" of the rectangle will miss the object for some {3 # 0.

Computing-wise, that would cause numerical problems. In practical terms, using that path

www.manaraa.com

23

has the potential to provide only the very crude information "the object lies to one side of the

line of approach" rather than the much more informative "measured location of contact."

Appendix A summarizes an example of the analytic geometry and calculus necessary

to support our analysis of the 8 = 4x2 different geometry/orientation combinations.

Appendix B contains the C and S-Plus programs written to implement the calculations

described in Chapter 3. Examples of the output of our programs (i.e., the best/final AWT(s)

and their corresponding design(s)) are given in Appendix C. Appendix D contains figures

portraying best designs found by direct enumeration and some examples of what the (ONE

and GA) algorithms found in cases where no direct enumeration was possible. Appendix E

provides graphical comparisons of the performance of the ONE and GA heuristics in terms of

expected final AWT as a function of computing effort. This chapter contains our summary

discussion of the results of our experimentation with the search algorithms across the 8

geometry/orientation test cases.

4.1. CHOICE OF CONSTANTS IN THE FIGURE OF MERIT

Displays (3.3) and (3.4) prescribe averaging over some set of 27 ji's. These are meant

to in some sense represent or cover the range of possible actual positions of the geometry. In

the motivating example, actual hood placement didn't vary drastically from the nominal

placement. This suggests choices of uL, UH, VL, VH, 0L, and 8H in (3.3) all "close to 0." In

our experiments we used

www.manaraa.com

24

Ul = -0.25 inch, uH = 0.25 inch,

vL = -0.25 inch, vH = 0.25 inch,

6l = -0.1 radian, 6h = 0.1 radian. (4.1)

We have also used the set of larger possible position perturbations defined by

ul = -5 inch, uh = 5 inch,

vL = -5 inch, vH = 5 inch,

6|_ = -0.1 radian and 8h = 0.1 radian

with several combinations of geometries/orientations and (m, k) sets. We obtained results

generally comparable to those for the choices (4.1). That is, most of "best" designs for the

two sets of constants found via complete enumeration are equivalent. See Table 4.1. In

Table 4.1, those cases where a single design is optimal for both sets are marked "=" and those

cases where optimal designs are slightly different are marked Where they are different,

we have matched up the maximum number of like Xi's in the two designs and report the

number (among k) that are unmatched. Those paths which are different tend to be located in

Table 4.1 Comparison of exhaustive search results for
the 2 sets of constants {uL, UH, VL, VH, 8l, 8h }

Geometry/
Orientation (m = 20, k = 4) (m = 20, k = 8)

HoodO = * (3)
Hood45 = =

ParO * (3) * (1)
Par45 * (2) =

RecO = * (I)
Rec45 * (1) =

TriO * (1) * (2)
Tri45 = =

www.manaraa.com

25

different "extreme" locations or result from slightly different patterns of repetition among the

same set of paths. The differences in Table 4.1 come from very large uncertainty in

horizontal and vertical locations of the geometry center of mass specified by our second set

of constants. In spite of this, half of the Table 4.1 results indicate a single "best" design.

0

v

Figure 4.1 27 different j3's

In Figure 4.1, the 27 dots representing the 27 different (3's corresponding to the choice

(4.1) are (actually) very close together to the "middle value," O. The 27 dots represent the 27

J3's for which we compute F(J3) as in (3.2) for a given design. We can also think the 27 dots

on Figure 4.1 as representing the 27 different positions of a geometry as illustrated in Figure

4.2. For each F(j3), C1 = (FTF) is obtained and yields a single WT(X). Since, we have 27

www.manaraa.com

26

Figure 4.2 27 Different Positions for a Rectangle Corresponding to J3's in Figure 4.1
(Axes are Those for the u = v = 0,6 = 0 Positioning) (Figure Not to Scale)

weighted traces, WT(X). we take their average and the AWT (3.4) is obtained. In the WT

calculation, 1 unit of uncertainty in horizontal or vertical position for a geometry's center of

mass is penalized roughly the same amount as a unit of uncertainty in location of an "extreme

corner" of the object brought on by rotation about its center of mass.

Table 4.2 displays parameters (used in Appendix A) to specify the 4 geometries used

as test cases in our study. These were chosen to give test geometries roughly the same "size"

as the actual hood in the motivating application.

www.manaraa.com

27

Table 4.2 Parameters of study geometries
(see Appendix A)

Hood Par Rec Tri
rl =40"
r2 = 90"

Tt =40°
T2 = 20°

z = 45" l_rec = 55.5"
w_rec = 41"

A (-15", -5")
B (30", -10")
C(-1". 20")

Table 4.3 summarizes the numbers of trials runs made in this study to produce the

(empirical) relative frequency distributions described in Chapter 3. In Table 4.3, "Others"

refers to "Parabolas/Rectangle/Triangle" shapes, at both 0° and 45°. "Hood" refers to "Hood"

shape, at both 0° and 45°.

Table 4.3 Numbers of trials run
Others Hood

m k GA ONE m k GA ONE
40 16 2500 1500 40 16 2500 1000
20 8 2500 5000 20 8 2500 2500
20 4 5000 10000 20 4 2500 5000

Table 4.4 summarizes the GA parameters (POPSIZE AND MAXGENS) used to

develop the (empirical) relative frequency distributions for a given geometry/orientation

combination. To make a "fair" comparison of the mean "best" AWTs, the (n_g:n_l) ratio in

(3.8) can be used. For example, "1:2" (n_g:n_l) ratio means 1 random start of GA algorithm

is equivalent in computational burden to 2 random starts of the ONE algorithm.

Table 4.5 summarizes the best/final AWTs obtained through exhaustive search, and

using the ONE and GA algorithms for various combinations of geometry/orientation and

problem size (m, k). In Table 4.5, the number of trials used for ONE and GA are as shown in

Table 4.3. Some figures portraying best/final designs corresponding to the best/final AWTs

www.manaraa.com

28

Table 4.4 GA parameters, and (n_g:n_l) ratio
(m,k)

(20,4) (20,8) (40,16)
Geometry/ POPSIZE/ POPSIZE/ POPSIZE/
Orientation MAXGENS n_g:n_l MAXGENS n_g:n_l MAXGENS n_g:n_l
HoodO 8/20 1:2 6/40 2:3 8/40 2:1
Hood45 8/20 1:2 8/20 1:1 8/40 2:1
Part) 8/20 1:2 32/250 1:50 20/32 1:1
Par45 8/20 1:2 40/50 2:25 16/40 1:1
RecO 8/20 1:2 50/64 1:20 32/40 1:2
Rec45 8/20 1:2 40/50 2:25 32/40 1:2
TriO 8/20 1:2 32/50 1:10 32/80 1:4
Tri45 8/20 1:2 16/40 1:4 16/40 1:1

Table 4.5. Best/final AWT found by enumeration, ONE, and GA

Geometry/

Orientation

Best AWT

Geometry/

Orientation

(m = 20, k = 4) (m = 20, k = 8) (m = 40, k = 16) Geometry/

Orientation Exhaust ONE GA Exhaust ONE GA ONE GA

HoodO
Hood45

0.341623
0.545409

0.341623
0.545409

0.341623
0.545409

0.108169
0.255715

0.108169
0.255715

0.108169
0.255715

0.047245
0.124980

0.050616
0.144551

Part)
Par45

1.172487
0.457386

1.172487
0.457386

1.172487
0.457386

0.510017
0.211846

0.510017
0.211846

0.510017
0.211846

0.250311
0.105308

0.256739
0.118118

RecO
Rec45

1.507293
0.755208

1.507293
0.755208

1.507293
0.755208

0.752810
0.370539

0.752810
0.370539

0.752810
0.370539

0.376405
0.185270

0.400188
0.190907

TriO
Tri45

0.438142
0.050006

0.438142
0.050006

0.438142
0.050006

0.193954
0.020805

0.193954
0.020805

0.193954
0.020805

0.060495
0.009642

0.070156
0.013417

in Table 4.5 are displayed in Appendix D. Our general discussion of the results are in the

following sections.

4.2. EXHAUSTIVE COMPUTATION

For all 4 geometries and 2 orientations in this study, we found the best (minimum)

AWT through exhaustive computation for the "small" and "medium" (m, k) (namely (20, 4)

and (20, 8)). Corresponding pictures of best designs are in Appendix D. We observe that in

some cases because of symmetries in our geometries, placements and choices (4.1), there

www.manaraa.com

29

exist (and can be many) equally good designs (choices of k and Xi, X%, ... , Xk). (We also

note, however, that where multiple optima were found in our study, the designs were

symmetric. In no case did we find best designs equivalent in terms of AWT that were

essentially different.)

The design(s) corresponding to the best (minimum) AWT for the small set (m, k) =

(20,4) do not have many paths repeated and the paths prescribed are generally located closest

to the "extremes" of the region of study and aimed near nominal "corners" of a particular

geometry. This is perhaps not surprising, since those locations are often "furthest" from the

center of mass of the geometry (and are thus very important in determining 6, the angle of

rotation of the object about its center of mass) and also somehow "capture the shape" of the

object.

For the "medium" size problem with (m, k) = (20, 8), optimum probe paths are like

those for "small" (m, k). The additional data points generally correspond to probe paths

aimed at additional "extremes" or "corners," and some paths are repeated as k grows.

The evidence provided by the exhaustive searches indicates that our figure of merit is

reasonable.

4.3. SEARCH HEURISTICS (ONE AND GA)

The particular versions of the GA algorithm used in our study had various POPSIZEs

(depending on the geometry/orientation and problem size (m, k)) as in Table 4.4.

Michalewicz (1996) notes that if the population is too small, a GA will converge too quickly.

On the other hand, if it is too large, the GA may waste computational resources: the waiting

time for an improvement can be too long. We determined by trial and error that POPSIZE

www.manaraa.com

30

and MAXGENS as in Table 4.4 work well in our design problems. Other GA parameters in

our study were PXOVER = 0.8 and PMUTATION = 0.15. These were also chosen based on

some trial and error experience with the heuristic in this context. These choices provide for

frequent cross-overs and relatively infrequent mutations.

As shown in Table 4.5, both ONE and GA found an optimal design for all

combinations of geometries/orientations, in the "small" (m, k) = (20,4) and "medium" (m, k)

= (20, 8) problems in the large numbers of trials indicated in Table 4.3.

For the "large" problem with (m, k) = (40, 16), direct enumeration was not possible

and we therefore do not know the exactly optimal value of AWT. As indicated in Table 4.5,

in all cases, ONE found better designs than GA. However, the differences in the best

AWT(s) found are very small and the corresponding designs are qualitatively similar.

The best design(s) corresponding to the best AWT found by ONE and GA for the

"large" (m, k) problem have many repeated paths and the paths prescribed are again generally

located near the "extremes" of the region of possible location and "corners" of a geometry.

The optimum paths are as those in "small" or "medium" (m, k) problems and the additional

data points are generally obtained as repeats of the paths prescribed in the "small" or

"medium" context.

It seems that as k increases, until "optimal paths" have been selected many times (and

with about the same relative frequency), "new" paths do not appear in an optimal design.

However, apparently as m increases (improving the "fineness of the grid" of possible probe

paths), the paths used in an optimal design are qualitatively the same as for smaller m.

Therefore, in some sense, it is k and not m that is the principal determiner of the nature of

optimal designs.

www.manaraa.com

31

Graphs of the Mean "Best" AWT, EZn, versus the Computation Resource (n) for all

combinations of shapes/orientations, (m, k) for both ONE and GA are plotted in Appendix E.

On the graphs, the "Computation Resource (n)" is n_g. What is plotted is then EZn for the

GA and the corresponding value "EZn" for ONE based on trials as in display (3.8) using the

parameters (POPSIZE and MAXGENS) in Table 4.4. For all the geometry/orientation

combinations studied and "small" (m, k) problems, in at least n_g = 4 (or n_l = 16) trials, we

have an expected best AWT that is essentially the optimum value. For "medium" (m, k), in

n_g = 4 (or n_l = 100) trials, an expected best AWT is essentially the optimum value.

Finally, for "large" (m, k) problem, in n_g = 10 (or n_l = 4) trials, an expected best/final

AWT nearly as good as that discovered in our (much larger) study is available.

www.manaraa.com

32

CHAPTER 5. CONCLUSIONS

In this chapter, a summary for this dissertation will be presented, followed by some

recommendations and finally, some possible topics for future research.

5.1. SUMMARY

Using the Figure of Merit in (3.4), several computing methods (Exhaustive, ONE, and

GA) have been used to search for optimal designs for various geometries, orientations,

design sizes (k) and numbers of candidate probe paths (m).

The summary of the results generally goes as follows. Various geometries,

orientations, number of data points (k) and numbers of candidate paths (m) affect which

paths enter optimum designs and the corresponding Average Weighted Traces (AWTs). m

does not really affect the nature of an optimum design. But the larger m, the higher is the

computation time. The number k affects the qualitative nature of optimum designs.

Apparently, as k exceeds the number of "extremes" (peaks/valleys/corners) of a geometry (or

as there are enough data to "capture" the shape of the object), the paths chosen in an optimal

design will just repeat the optimum locations of smaller designs. For the same object shape,

different orientations will give different optimum designs and AWTs but the qualitative

nature of our conclusions is unchanged. The paths in an "optimum/best" design will

generally be located closest to the "extremes" of the object boundary or will be aimed near

"corners" of the object. Across our entire study we found no cases where two fundamentally

different designs had optimum AWTs. (Only symmetries in a problem produced multiple

www.manaraa.com

33

optima.) Across our study, the ONE algorithm seems better than the GA algorithm since it

almost always gives a smaller Mean "Best" AWT for a given investment of computing effort.

However, the differences (see Table 4.5), are very small.

Based on this summary and referring back to the motivating problem in Chapter 1, we

see that progress has been made. We have found a useful mathematical formulation of the

problem of estimating the unknown location of a known 2-dimensional object using CMM-

type data in the presence of measurement error. We have shown that the formulation

provides guidance in the planning of CMM-type data collection. And we have taken steps to

provide algorithms for optimizing that data collection.

5.2. RECOMMENDATIONS

For a "small" choice of (m, k), one can use an exhaustive search to find a design. It

will give an optimum/best solution in a (relatively) "short" time. For a "medium/large"

choice of (m, k), the author recommends the ONE algorithm since it will typically give

"optimum/best" results in a reasonably "not-too-long" time. The GA algorithm sometimes

finds "optimum/best" solutions but generally does not, for "large" (m, k) problem.

5.3. FUTURE RESEARCH

There are several directions in which one can expand this research. First, one might

extend it from known 2-dimensional geometries to known 3-dimensional geometries.

Second, as we noted in Section 3.1, uncertainty in probe paths might be incorporated into our

current model (3.1). Third, instead of employing tedious algebra to produce shape-dependent

equations on a geometry-by-geometry basis as outlined in Appendix A, a general

www.manaraa.com

34

methodology might be developed for linking Computer Aided Design (CAD) files to discrete

numerical analysis routines to automate calculations for arbitrary geometries.

www.manaraa.com

35

APPENDIX A. FORMULAS

This appendix provides more details for the analysis outlined in Chapter 3, for

specific/particular geometries/orientations. The prescriptions are presented in Section A.2

for one particular geometry/orientation (Triangle/0o orientation). For other

geometries/orientations, the procedures described in Section A.2 apply, and thus in Sections

A.3 - A.9, only the figures and our choice of parameters describing them are presented.

A.l. TRANSLATIONS AND ROTATION

From simple analytical geometry, the relationship between a point's coordinates (x",

y") in a translated and rotated coordinate system and its coordinates (x, y) in an original

coordinate system is

''cos 6 sin 6^
(x y) = (u v) + (x" y")

which is equivalent to

• sin 0 cos 9

x = u + x " cos 9 - y" sin 6
y = v + x" sin 9 + y" cos 9 (A.l)

where u is the horizontal translation of the origin, v is the vertical translation of the origin

and 9 is the angle of rotation of the coordinate axes.

www.manaraa.com

36

A.2. TRIANGLE, 0° ORIENTATION

The following development is used to find the functions to be entered into the

program "der.h" for obtaining the derivative matrix F, for Triangle Shape, 0° orientation.

The parameters used to describe the triangle in its nominal position (to be entered to the

program "con.h") consists of the 3 corner points A(xl, yl), B(x2, y2), C(x3, y3) expressed in

an arbitrary/convenient coordinate system with axes parallel to those of the CMM. The

center of mass (x, y) with respect to this arbitrary coordinate system is

- xl + x2 + x3 , - yl + y2 + y3 x = and y = —.
3 3

For the remainder of our discussion, after we know the center of mass of our geometry (in

this case, the triangle), we use this as our origin for a coordinate system on the object, and

construct x" and y" axes through this point, parallel to the CMM coordinate axes when the

geometry is in its ideal position. Note that if we know from the beginning the center of mass

of our object (for example, in the rectangle case), we can omit the above discussion, and

begin calculations with the object's center of mass as the origin of our coordinate system.

The following 3 steps can then be taken. First, the coordinates of the 3

extreme/corner points A, B, C can be found. Second, equations of the 3 lines (AB, AC, BC)

are derived. Third, the 6 (shape dependent) functions fl, ... , f6 indicated in Figure A. 1 and

specifying where a probe path first touches the figure are identified.

A.2.1. Step 1: Finding the Extreme/Corner Points A, B, C

The coordinates of A(xA, yA), B(xB, yB) and C(xC, yC) in the object's coordinate

system are

www.manaraa.com

37

xA = xl-x,

yA = y 1 - y,

xB = x2-x,

yB = y2-y,

xC = x3-x,

yC = y3-y.

These extreme/corner points are useful in identifying the rectangle that bounds the geometry

(in this case, the triangle) when it is in its nominal position. Allowing some "margin" on

each end of each side of the bounding rectangle, (m/4) equally spaced candidate probe paths

can be identified.

A.2.2. Step 2: Finding the Equations for the 3 Sides of the Triangle Shape

There are 3 equations (in the object's coordinate system) to find: those for lines AB,

AC, and BC. From

yB-yA _ y-yA

xB-xA x- xA

the equation for line AB is

which we will write in the triangle's coordinate system as

y" = (pi) x" + (ql) (A.2)

where,

The equation for line AC is

which we will write in the triangle's coordinate system as

www.manaraa.com

38

y" = (p2) x" + (q2) (A.3)

where, P2 = l^l and q2=(»-")(y3-yl) + y , . -
x3- xl x3- xl

Finally, the equation of line BC is

y =yLy2 x + (x zx2) t i2 ;y2)+ 2 . -

x3-x2 x3-x2

which we will write in the triangle's coordinate system as

y" = (p3)x" + (q3) (A.4)

where, p3=^ and q3=(x-x2)(y3-y2)
x3-x2 x3-x2

A.2.3. Step 3: Finding the 6 shape dependent functions

Suppose that (as pictured in Figure A. 1) one knows the height (y) or the depth (x) (in

a coordinate system with origin at the ideal location for the center of mass with axes parallel

to the CMM coordinate axes, i.e., the object's coordinate system when 0 = 0) for the

horizontal/vertical coordinate at which a probe following path X, from side I or side 2 of the

bounding rectangle, first touches the side AB of the triangle (actually located at {)). Given

that y (or x), one can solve the equations (A.l) and (A.2) for x (or y) in terms of the

parameter 0 = (u, v, 0)T and y (or x). If y is known,

x = (y-v-ql-cose)(cos8-pl .s in9)+ u_ q | . s i n 9 = (2 (e) . (A . 5)

(sin6-pi cos6)

On the other hand, if x is known,

y = (x-u-ql .s in8)(s in8-pl .cos8)+ v + q | . c o s„ = f l (w 9) (A 6)

(cosB-pl s in9)

www.manaraa.com

39

Side 3

13

Side 2

f2

Side 1

Figure A.l. Triangle, 0° Orientation, Nominal or Ideal Position (Ji = 0)

In Figure A.l, the function fl is given by equation (A.6) and the function f2 is given by

equation (A.5).

Similarly, for a given y (or x), one can solve the equations (A.l) and (A.3) for x (or y)

and obtain functions f3 and f4 by replacing pi and ql in (A.5) and (A.6) with p2 and q2.

Again, for a given y (or x), one can solve the equations (A.l) and (A.4) for x (or y) and

obtain functions f5 and f6 by replacing pi and ql in (A.5) and (A.6) with p3 and q3. Now,

one can use the program "der.s" in Appendix B.9 for each of fl through f6 and obtain the

derivative results to enter into the program "der.h" in Appendix B.4.

www.manaraa.com

40

A.3. TRIANGLE, 45° ORIENTATION

Now, the triangle from Figure A. 1 is rotated 45° as shown on Figure A.2. One can

use equation (A.l) to find the new positions of the vertices of the triangle in its nominal

position. Then the 3 steps illustrated in Section A.2 can be used to get the functions fl

through f6 (and the derivative matrix F) as indicated on Figure A.2.

f5

Side 4)

Side 1

Side 3

Side 2

f2 fl
Figure A.2. Triangle, 45° Orientation, Nominal or Ideal Position (Ji =0)

www.manaraa.com

41

A.4. RECTANGLE, 0° ORIENTATION

The parameters we use for describing this object in its nominal position consist of the

length (l_rec) and the width (w_rec) (in a coordinate system with axes parallel to the CMM

axes). Then, the center of mass is simply (l_rec/2, w_rec/2) and this is used as the origin of

our part coordinate system. With respect to the J3 = 0 coordinate system, the 4 shape

dependent functions f (see Figure A.3) referred to in Section 3.1 can be obtained using the

same procedures as in Sections A.2.1 - A.2.3. These 4 functions are entered into the program

der.h (to get the derivative matrix F) as described in Chapter 3.

fl

Side 2

Side 3

f4

D

(Side 4)

Side 1

f2

Figure A.3. Rectangle, 0° Orientation, Nominal or Ideal Position (J3 = 0)

www.manaraa.com

42

A.5. RECTANGLE, 45° ORIENTATION

The rectangle of Section A.4 is now rotated 45° and as shown in Figure A.4. Again,

the same steps can be used to find the appropriate derivative matrix F to be entered into the

program "der.h" for this rectangle, 45° orientation case. In addition, the parameters for the

geometry are entered and can be modified in the program "con.h".

f6 re
Side 3

f5

(Side 4) (Side 2)

f3

(Side i)

f4

Figure A.4. Rectangle, 45° Orientation, Nominal or Ideal Position (Ji = 0)
f2

www.manaraa.com

43

A.6. HOOD, 0° ORIENTATION

The parameters we use to describe this geometry in nominal position consist of the

radii rl, r2 and the angles Tl, T2 as shown on Figure A.5 in an arbitrary/convenient

coordinate system with axes parallel to the CMM coordinate axes. The center of mass can be

found by simple analytical geometry and is then used as the origin of our part coordinate

system. Next, the same procedures as before can be applied to this problem.

(side 3

Side 4 Side 2

flO

Figure A.5. Hood, 0° Orientation, Nominal or Ideal Position (0 = 0)

www.manaraa.com

44

A.7. HOOD, 45° ORIENTATION

The hood shape of Section A.6 is rotated 45° and is now shown on Figure A.6 in its

nominal position. Again, the same steps produce the appropriate derivative matrix F to be

entered to the program "der.h" for this hood shape, 45° orientation case. In addition, the

parameters for the geometry are entered and can be modified in the program "con.h".

(Side 3)

(Side 2)

(Side 1)

Figure A.6. Hood, 45° Orientation, Nominal or Ideal Position (]3 = 0)

www.manaraa.com

45

A.8. PARABOLAS, 0° ORIENTATION

Here, the object of interest in nominal position is defined by 2 quadratic equations y =

x2 - z and y = -x2 + z. The shape can then by parameterized by the y-intercepts, ± z, as

shown on Figure A.7. The center of mass is (0, 0) and is the origin of our J5 = 0 part

coordinate system. With respect to this coordinate system, the same procedures as before can

be applied to this problem.

O(0,0)

(Side i)
f2 v ' fl

Figure A.7. Parabolas, 0° Orientation, Nominal or Ideal Position (Ji = 0)

www.manaraa.com

46

A.9. PARABOLAS, 45° ORIENTATION

The geometry in Section A.8 is rotated 45° and is now shown on Figure A.7. Again,

the same methods can be used to find the appropriate derivative matrix F to be entered in the

program "der.h" for the Parabolas, 45° orientation case. In addition, the parameters

describing the object are entered and can be modified in the program "con.h".

(side 3)

(side 4)

(Side l' f6

Figure A.8. Parabolas, 45° Orientation, Nominal or Ideal Position (J3 = 0)

www.manaraa.com

47

APPENDIX B. COMPUTER PROGRAMS

Presented here are a number of programs needed to implement the computations

described in Chapter 3 for one of our test cases: Triangle, 0° Orientation. For any other

shape/orientation, one needs to replace the Triangle, 0° Orientation equations with ones

appropriate to the case of interest. We employ several conventions in discussing the

programs. The programs themselves (either C programs or S-plus programs) are displayed in

the Courier New font while all other text is in the standard Times New Roman font.

Wherever possible, intuitive names are chosen for variables appearing in the algorithms.

Program names ending with ".c" and ".h" are done in c-language and those ending with ",s"

are in s-language (Splus).

The programs are partitioned in such a way that they can be easily modified for other

2-dimensional geometries/orientations. The main programs each implement one of the

methods of searching for an optimal design (Exhaustive, ONE, or GA) and are named

"exhaust.c", "one.c", and "ga.c". Other (partitioned) programs "mat.h", "con.h", and "der.h"

are already included/linked to the 3 main programs. Thus, for a different

geometry/orientation, one just needs to modify "con.h" and "der.h". Presented here is an

example for one particular geometry, namely a triangle. The program "der.s" finds

derivatives functions to be entered into the program "der.h". Finally, to plot the graph of

E(Zn) versus n discussed in Section 3.4.5, one can use the program "EZ.s".

www.manaraa.com

48

The following is a list of the programs and their uses:

cnt.c computes the total number of designs, for a given m and k,

mat.h computes the inverse of a real matrix, the weighted trace, and

does the detailed work of one-at-a-time computation,

con.h contains parameters and constants needed for a particular

geometry/orientation,

der.h contains the (shape dependent) derivative functions,

exhaust.c does an exhaustive search for a best design,

one.c implements the one-at-a-time search algorithm,

ga.c implements the genetic algorithm,

EZ.s plots the graph of E(Zn) versus n,

der.s obtains the derivative functions for "der.h" program.

Those programs are presented in Sections B. I to B.9.

B.l. THE PROGRAM "cnt.c"

As mentioned in Section 3.4, to implement the loops indicated on the left side of (3.5)

for counting possible designs, the program "cnt.c" can be used. This program is for m = 80,

and k =20. For other m, one can simply change the number 80 in this program to be the

number desired. For k points, one can declare more integers at the beginning of the program

and modify the number of loops in the existing program to be k loops.

www.manaraa.com

49

/* counting the total number of design possibilities */

*include <stdio.h>
#define m 80
main(){

int il, i2, i3, i4, 15, 16, 17, 18, 19, 110;
int ill, 112, 113, 114, 115, 116, 117, 118, 119, 120;
long s = 0 ;

for(11=0 ; il<m; 11 + +)
for(12=11; 12<m; 12++)
for(13=12 ; i3<m; 13++)
for(14=13 ; 14<m; 14++)
for(15=14 ; 15<m; 15++)
for(16=15 ; 16<m; 16++)
for(17 = 16 ; 17<m; 17 + +)
for(18 = 17 ; 18<m; 18 + +)
for(19=18 ; 19<m; 19 + +)
for(110 = 19; il0<m; 110++)
for(ill = 110; ill<m 111++)
for(il2 = 111; il2<m 112++)
for(113 =112; il3<m 113++)
for(114 = 113; 114<m 114++)
for(115 =114 ; 115<m 115++)
for(116 = 115; 116<m 116++)
for(117 = 116; 117<m 117++)
for(118 = 117; 118<m 118++)
for(119 = 118; il9<m 119++)
for(120 = 119; 120<m 120++)

s++;
printf("total number of designs to check: %ld\n", s);

}

B.2. THE PROGRAM "mat.1T

The following program does not need to be modified for other

geometries/orientations. Basically, it computes the inverse of a real matrix, the weighted

trace, and does the detailed work of the one-at-a-time search algorithm.

/* equally spaced length-c-sequence from a to b(if a<b) or b to a(if
a>b)* I
void seq (double a, double b, int c, double *out){

int i;
double ss ;
ss = (b-a)/(c-1.0);
if (a < b)

for (1 = 0; i < c; i++) *(out+i) = a + i * ss;
else{

www.manaraa.com

50

SS = -SS;

for (i = 0; i < c; i++) *(out+i) = a - i * ss;}
}

/* Rank a real vector
rv is the real vector to be ranked.
M2 is the size of rv.
order is either ascending or decending.
irank is the rank for output*/

void rank(double *rv, int m2, char order, int *irank){
int ml=l, ifail=0;
double m01daf_(), m01zaf_() ;
m01daf_(rv, &ml, &m2, border, irank, &ifail);
m01zaf_(irank, &ml, &m2, &ifail);
for (ml = 0; ml < m2; ml++) irank[ml]--;

/* Invert A of size_A.
size is defined by macro and must be >= size_A
define size as the maximum of those matrices to
be inverted

if A is invertible, then return *info=0, and Ac-inverse(A).
otherwise, return *info=l. and A<-LU(ignored)

this is tested!! !

#define size 3
void inv (double *A, int size_A, int *info_p){

int mm, nl, Ida, lwork = size * size;
int ipiv[size];
double Work [size*size] ,-
double f07adf_(), f07ajf_();
mm=size_A; nl=size_A; lda=size_A;
f07adf_(&mm, &nl, A, &lda, ipiv, info_p);
if (*info_p == 0) f07ajf_(&nl, A, &lda, ipiv. Work, &lwork, info_p);
else *info_p=l;

}
* /

/* invert a real symmetric matrix stored as a vector of
the upper triangular part — A. size_A is the order of
that matrix.
if A is invertible, then return *info_p=0, A<-vech(inv A)
otherwise return *info_p=l

*/

#define size 3
void inv_sym (double *A, int size_A, int *info_p){

char uplo='L';/* note the storage diff between C and Fortran */
int ipiv[size];
double work[size];
double f07pdf_(), f07pjf_();

f07pdf_(&uplo, &size_A, A, ipiv, info_p);
if (*info_p ==0) f07pjf_(&uplo, &size_A, A, ipiv, work, info_p);

www.manaraa.com

51

else *info_p = 1;
}

/* compute weighted trace.
F is df/d(u,v,t), W is the weight
if F'*F invertible return weighted trace.
otherwise return 0.*/

double wtrace(double F [k][3], double W[3]){
int r, c, i, cnt, info, *info_p;
double C[6];

for (r = 0; r < 6; r++) C[r]=0 . ;
info_p = &info;
cnt=0;
for (r = 0; r < 3; r++)

for (c = r; c < 3 ; c++){
for (i = 0; i < k; i++) C[cnt] += F[i] [r] *F[i] [c] ;
cnt++;}

inv_sym (C, 3, info_p);
if (*info_p == 0) return(W[0]*C[0]+W[1]*C[3]+W[2]*C[5]);
else return (0.);

/* one at a time search */
double one_a_time(int *i, int *ind, double *W, double *dat){

int jl, j2, dex[k];
double tl, t2;
double x[k];
double awt_rec();
for (jl = 0; jl < k-1; jl++) (

x[jl]=dat[*(i+jl)]; dex[j1]=ind[*(i+jl)];}

for (jl = k-1; jl >= 0; jl--) (
*(i + jl) = 0 ;
x[jl] = dat[0]; dex[j1]=ind[0];
tl = awt_rec(x, dex, W);
for (j2 = 1; j2 < m; j2++){

x[j1] = dat[j2]; dex[jl]=ind[j2];
t2 = awt_rec(x, dex, W);
if (tl>t2) {*(i+jl)=j 2 ; tl=t2;}

}
x[j1]=dat[*(i+jl)]; dex[jl]=ind[*(i+jl)];

}
return(tl);

/* two at a time search */
double two_a_time(int *i, int *ind, double *W, double *dat)(

int jl, j2, j3, j4, dex[k];
double tl, t2;
double x[k];
double awt_rec();
for (jl = 0; jl < k-2; jl++) {

x[jl]=dat[*(i+jl)]; dex[j1]=ind[*(i+jl)] ;}

www.manaraa.com

52

for (jl = k-1; jl >= 0; jl—){
*(i+jl) = 0;
x[jl] = dat[0]; dex[jl]=ind[0];
for (j2 = k-2; j2 >= 0; j2 —){

*(i+j2) = 0;
x[j2] = dat[0]; dex[j2]=ind[0] ;
tl = awt_rec(x, dex, W);
for (j3 = 1; j3 < m; j3++){
x[jl] = dat[j3]; dex[jl]=ind[j3] ;
for (j 4 = 1; j 4 < m; j4 + +){

x[j2] = dat[j4]; dex[j2]=ind[j4] ;
t2 = awt_rec(x, dex, W);
if (tl>t2) {

* C i + j 1) = j 3 ;
* (i + j 2) = j 4 ;
tl=t2;}

}
}
x[jl]=dat[*(i + jl)]; dex[jl]=ind[*(i + jl)] ;
x[j2]=dat[*(i +j2)]; dex[j2]=ind(*(i + j2)] ;

}

}
return(tl);

}

B.3. THE PROGRAM "con.h"

This is the program where one enters those constants needed to describe a particular

geometry/orientation. For the purpose of example, this is the particular program "con.h" for

a Triangle Shape, and 0° Orientation. The parameters chosen for this triangle shape are the 3

points (x, y) specified with respect to an arbitrary/convenient origin. One can change m , k,

n_l (number of random starts desired for ONE), seed (random seed choice), etc. Other

comments are in the program itself.

#define k 16 /* number of affordable points or msmts */
#define m 40 /* number of possible slots */
tdefine XI (-15.)/* x-coordinate for 1st point */
#define Y1 (- 5.) /* y-coordinate for 1st point */
define X2 30. / x-coordinate for 2nd point */
tdefine Y2 (-10.)/* y-coordinate for 2nd point */
#define X3 (-1.) /* x-coordinate for 3rd point */
#define Y3 20. /* y-coordinate for 3rd point */

www.manaraa.com

53

#define
#define
#define
tdefine
#define
tdefine
*define
#define
#define
tdefine
tdefine
#define
tdefine
#define

#define

#define
tdefine
tdefine

tdefine
#define
CM)A2*/
tdefine
tdefine

tdefine
tdefine

Xbar ((X1+X2+X3)/3.)
Ybar ((Y1+Y2+Y3)/3.)

/* x-coordinate for the Center of Mass */
/* y-coordinate for the Center of Mass */

XA
XB
XC
YA
YB
YC

Pi
p2
P3
ql
q2
q3
WT.
wl

/*

/*

/*

/*

/*

/*

x-coordinate for 1st point wrt the CM
x-coordinate for 2nd point wrt the CM
x-coordinate for 3rd point wrt the CM
y-coordinate for 1st point wrt the CM
y-coordinate for 2nd point wrt the CM
y-coordinate for 3rd point wrt the CM

(XI-Xbar)
(X2-Xbar)
(X3-Xbar)
(Yl-Ybar)
(Y2-Ybar)
(Y3-Ybar)
(Y2-Y1)/(X2-X1)
(Y3-Y1)/(X3-X1)
(Y3-Y2)/(X3-X2)
((Xbar-Xl)*(Y2-Y1)/(X2-X1)+Yl-Ybar)
((Xbar-Xl)*(Y3-Y1)/(X3-X1)+Yl-Ybar)
((Xbar-X2)*(Y3-Y2)/(X3-X2)+Y2-Ybar)

.SIZE /*88B5*/ 2220075 /* using test/cnt.s
1. /* the weight omegal */

' /

*/

*/

*/

*/

*/

*/

'/

w2 1. /* the weight omega2
MAX(x,y) (x)>(y) ? (x):(y)
jnk MAX(pow(XA,2.)+pow(YA,2.),pow(XB,2.)+pow(YB,2.))
w3 MAX(jnk,pow(XC,2.)+pow(YC,2.)) /*(furthest distance from

BIG l.e6
n_l 1500 /* number of starts for one-at-a-time */
n_2 50 /* number of starts for two-at-a-time */
seed 100 /* random number seed */

B.4. THE PROGRAM "der.h"

For the purpose of example, this is the "der.h" program for Triangle Shape, 0°

orientation. There are 2 options (horizontally/vertically) to "touch" each of the 3 sides.

Hence there are 6 "switches" for the derivative functions needed for this program. Each

"switch" refers to a different "derivative function" named dfl, ... ,df6 in this program. For a

different shape, one can just adjust the "switch" number (indicated by "case i : ") in this

program to be as many derivative functions (indicated by /* dfi/d(u,v,t) */ in this

program) as needed.

/* make data and corresponding indices telling which derivative to use */

void get_dat(double *dat, int *ind){
int iO;

www.manaraa.com

54

/* set up the potential points */
seq (XA+.5, XB-.5, (m/4), dat); /* side 1 */
seq (XA+.5, XB-.5, (m/4), dat+m/4*2); /* side 3 */
seq (YB+.5, YC-.5, (m/4), dat+m/4); /* side 2 */
seq (YB+.5, YC-.5, (m/4), dat+m/4*3); /* side 4 */

/* set up the indices */
for (iO = 0; iO < m/4; i0++)

ind[i0] = 1;
for (iO = m/4; iO < m/4*2; i0++)(

if(dat[iO]<=YA)
ind[i0] = 2;

else ind[i0] = 3 ;}
for (iO = m/4*2; iO < m/4*3; i0++)(

if(dat[iO]<=XC)
ind[i0] = 4;

else ind[i0] = 5;}
for (iO = m/4*3; iO < m; i0++)

ind[i0] = 6;

/* triangular shape
compute average weighted trace for 3*3*3 u, v, t
k is the number of affordable points,
X is the points, ind indicates at which side.
W is the weights.
if one of the weighted trace is 0., return a big value*/

double awt_rec(double x[k], int ind[k], double W[3]){
int iu, iv, it, ik;
double F[k][3];
double u[3]={-.25, 0., .25}, v[3]={-.25, 0., .25}, t[3]=(-.l, 0., .1};
double result, ave = 0.;
void dfl(), df2(), df3(), df4(), df5(), df6(), df7(), df 8 () ;
for (iu = 0; iu < 3; iu++)(

for (iv = 0; iv < 3; iv++){
for (it = 0; it < 3 ; it++)(
for (ik = 0; ik < k; ik++){

switch(ind[ik]){
case 1: dfl(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
case 2: df2(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
case 3 : df3(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
case 4: df4(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
case 5: df5(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
case 6 : df6(x[ik] , u[iu], v[iv], t [it] , F[ik]) break
default printf(" something wrong with awt_rec\n"); break;}

result = wtrace (F, W) ;
if (result <= 0.) (ave = BIG; goto end;}
else ave += result/27.;
}

}
}
end: return (ave);

www.manaraa.com

55

/* dfl/d(u,v,t) */
void df1(double X, double u, double v, double t, double *F){

double expr2, expr3, expr4, exprB, expr?;
double exprô, exprlO, exprl3;
expr2 = sin(t);
expr3 = ql * expr2;
expr4 = (X - u) + expr3;
exprô = cos(t);
expr? = expr2 + (pi * exprô);
exprô = expr4 * expr?;
exprlO = exprô - (pi * expr2);
exprl3 = ql * exprô;
*F = - (expr?/exprlO);
*(F+l) = 1. ;
*(F+2) = ((((exprl3 * expr?) + (expr4 * exprlO))/

exprlO) + ((exprô * expr?)/pow(exprlO,2.))) - expr3;
}

/* df2/d(u,v,t) */
void df2(double X, double u, double v, double t, double *F){

double expr2, expr3, expr4, exprô, expr?;
double exprô, exprlO, exprl3;
expr2 = cos(t);
expr3 = ql * expr2;
expr4 = (X - v) - expr3;
exprô = sin(t);
expr? = expr2 - (pi * exprô);
exprô = expr4 * expr?;
exprlO = exprô + (pi * expr2);
exprl3 = ql * exprô;
*F = 1.;
*(F+l) = - (expr?/exprlO);
*(F+2) = ((((expr13 * expr?) - (expr4 * exprlO))/

exprlO) - ((exprô * expr?)/pow(exprlO,2.))) - expr3;
}

/* df3/d(u,v,t) */
void df3(double X, double u, double v, double t, double *F){

double expr2, expr3, expr4, exprô, expr?;
double exprô, exprlO, exprl3;
expr2 = cos(C);
expr3 = q2 * expr2;
expr4 = (X - v) - expr3;
exprô = sin(t);
expr? = expr2 - (p2 * exprô);
exprS = expr4 * expr?;
exprlO = exprô + (p2 * expr2);
exprl3 = q2 * exprô;
*F = 1.;
*(F+l) = - (expr?/exprlO);
*(F+2) = ((((exprl3 * expr?) - (expr4 * exprlO))/

exprlO) - ((exprô * expr?)/pow(exprlO,2.))) - expr3;
}

www.manaraa.com

56

/* df4/d(u,v,t) */
void df4(double X, double u, double v, double t, double *F)(

double expr2, expr3, expr4, exprô, expr?;
double exprô, exprlO, exprl3;
expr2 = sin(t);
expr3 = q2 * expr2;
expr4 = (X - u) + expr3;
exprô = cos(t);
expr? = expr2 + (p2 * exprô);
exprô = expr4 * expr?;
exprlO = exprô - (p2 * expr2);
exprl3 = q2 * exprô;
*F = - (expr?/exprlO);
*(F+l) = 1. ;
*(F+2) = ((((exprl3 * expr?) + (expr4 * exprlO))/

exprlO) + ((exprô * expr?)/pow(exprlO,2.))) - expr3 ;
}

/* dfô/d(u,v,t) */
void df5(double X, double u, double v, double t, double *F)(

double expr2, expr3, expr4, exprô, expr?;
double exprô, exprlO, exprl3;
expr2 = sin(t);
expr3 = q3 * expr2;
expr4 = (X - u) + expr3 ;
exprô = cos(t);
expr? = expr2 + (p3 * exprô);
exprô = expr4 * expr?;
exprlO = exprô - (p3 * expr2);
exprl3 = q3 * exprô;
*F = - (expr?/exprlO);
*(F+l) = 1. ;

*(F+2) = ((((exprl3 * expr?) + (expr4 * exprlO))/
exprlO) + ((exprô * expr?)/pow(exprlO,2.))) - expr3;

}

/* df6/d(u,v,t) */
void df6(double X, double u, double v, double t, double *F){

double expr2, expr3, expr4, exprô, expr?;
double exprô, exprlO, exprl3;
expr2 = cos(t);
expr3 = q3 * expr2;
expr4 = (X - v) - expr3;
exprô = sin(t);
expr? = expr2 - (p3 * exprô);
exprô = expr4 * expr?;
exprlO = exprô + (p3 * expr2);
expr13 = q3 * exprô;
*F = 1.;
*(F+l) = - (expr?/exprlO) ;
*(F+2) = ((((exprl3 * expr?) - (expr4 * exprlO))/

exprlO) - ((exprô * expr?)/pow(exprlO,2.))) - expr3;
}

www.manaraa.com

57

B.5. THE PROGRAM "exhaustc"

This exhaustive search program is for k = 4 points. For k other than 4, this program

can be modified by declaring more integers (iO, il,ik) at the beginning of the program

and adding more loops and making the necessary modifications in the marked part " / * Get

the Data and indices */". The number of candidate paths, m, is entered in the program

"con.h".

/* exhaust search */

#include <stdio.h>
#include <math.h>
#include "con.h" /* contains project constants */
#include "../mat.h" /* supporting routines */
#include "der.h"

main()(
int iO, il, i2, i3, i4;
int cnt=0;
int ind[m]; /* index of potential points

3 11--15
2 4 6--10 16--20
1 1 5

*/

int i[WT_SIZE][k]; /* index of affordable points */
int dex[k]; /* which sides of the affordable points */
int WT_RANK[WT_SIZE]; /* rank of the trace */
double dat[m]; /* potential points */
double x[k]; /* affordable points */
double W[3]=(wl, w2};/* weights */
double WT[WT_SIZE]; /* all possible trace */
W[2]=w3;

/* Get the Data and Indices */
get_dat (dat, ind);

for (il = 0; il < m; il++){
for (±2 = il; i2 < m; i2++)(

for (13 = i2; 13 < m; i3++)(
for (±4 = 13 ; i4 < m; i4++)(

x[0]=dat[il]; x[l]=dat[i2]; x[2]=dat[i3]; x[3]
i[cnt][0]=il; i[cnt][1]=i2;
i[cnt][2]=i3; i[cnt][3]=i4;
dex[0]=ind[il]; dex[l]=ind[i2]; dex[2]=ind[i3]
WT[cnt] = awt_rec(x, dex, W);
cnt+>;}

=dat[i4];

;dex[3]=ind[i4];

www.manaraa.com

58

}
}

}
rank (WT, WT_SIZE, 'a', WT_RANK);
printf("Exausted SearchXn");
printf("m=%d k=%d\n", m, k) ;
for (iO = 0; 10 < 10; i0++){

printf("Points :\t");
for (il = 0; il < k; il++) printf("%d\t", i[WT_RANK[iO]][il]+1);
printf("\nSides\t");
for (il = 0; il < k; il++) printf("%d\t", ind[i[WT_RANK[i0]][il]]);
printf("%f\n", WT[WT_RANK[i0]]) ;}

printf("\n");

B.6. THE PROGRAM "one.c"

The following program does not need to be modified for other

geometries/orientations.

/* one at a time search */

#include <stdio.h>
#include <math.h>
#include
#include
#include
main(){

int iO,
int mm,

con.h"
../mat.h"
der.h"

il,
nn;

tmp;

/*
int ind[m];

contains project constants */
/* supporting routines */

end points for uniform distribution */
' index of potential points
3 11--15

2 4 6--10 16--20
1 1 5

*/

int i[n_l][k];
int WT_RANK[n_l]

/* index of affordable points
; /* rank of the trace */

double dat[m]; /* potential points */
double x[k]; /* affordable points */
double W[3]={wl, w2};/* weights */
double WT[n_l]; /* the smallest trace
double g05cbf_(), g05dyf_();
W [2] = w3 ;

for n_l random starts*/

/* Get the Data and Indices */
get_dat (dat, ind);

/* set the seed */
iO = seed;

www.manaraa.com

59

g05cbf_(&i0);

/* iO loops over n_l random starts */
mm = 0; nn = m - 1;
for (iO = 0; iO < n_l; i0++){

for (il = 0; il < k-1; il++)
i[i0] [il] = g05dyf_(&mm, &nn);/* generate uniform(mm, nn) */

WT[iO] = one_a_time(i[i0], ind, W, dat);}
rank (WT, n_l, 'a', WT_RANK);
printf("One at a Time Search With %d Random StartsXn", n_l);
printf("m=%d k=%d\n", m, k);
for (iO = 0; iO < n_l; i0++) {

printf("Points :\t") ;
for (il = 0; il < k; il++) printf("%d\t", i[WT_RANK[i0]] [il] +1) ;
printf("\nSides\t");
for (il = 0; il < k; il++) printf("%d\t", ind[i[WT_RANK[iO]][il]]);
printf("%f\n", WT[WT_RANK[iO]]);}

printf("\n");

B.7. THE PROGRAM "ga.c"

The following program does not need to be modified for other

geometries/orientations. The parameters (such as POPSIZE, MAXGENS, NVARS,

PXOVER, PMUTATION, n_g) can be changed here (as shown in the beginning of this

program). The choice of constants such as m, k, seed, etc. can be made in the program

"con.h".

/* This DISCRETE genetic algorithm is to be used with the
/* programs "math.h", "der.h" and "con.h"
/* and also the NAG library as well as the MATH library

#include <stdio.h>
#include <stdlib.h>
*include <math.h>
#include "con.h"
#include "../mat.h"
*include "der.h"

/* GA parameters of interest */

tdefine POPSIZE 8
tdefine MAXGENS 40

/* population size = tof designs*/
/* max. number of generations */

www.manaraa.com

60

#define NVARS k
#define PXOVER 0.8
tdefine PMUTATION 0.15
tdefine TRUE 1
tdefine FALSE 0
tdefine n_g 2500

/* t of k measurements */
/* probability of crossover */
/* probability of mutation */

/* no. of looping random starts */

int generation;
int cur_best;

/* current generation no. */
/* best individual */

struct genotype /* genotype (GT), a member of the population */

int gene[NVARS];
double fitness;
int upper[NVARS]
int lower[NVARS]
double rfitness;
double cfitness;

/* a string of variables */
/* GT's fitness (1/this = Wt.Trace)*/
/* GT's variables upper bound */
/* GT's variables lower bound */
/* relative fitness */
/* cumulative fitness */

} ;

struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */

/* replaces the */
/* old generation */

/* declare 2 variables to be used with der.h */
int Ind[m];
double Dat[m];

/* Declaration of functions */

void initialize(void);
int randval(int, int);
void evaluate(void);
void keep_the_best(void) ;
void elitist(void);
void Select(void);
void crossover(void);
void Xover(int,int);
void swap(int *, int *);
void mutate(void);

*/

*/

*/

*/

void initialize(void)
(
int i, j;
int lbound=0, ubound=m-1;

/* initialize variables/measurements within the bounds */

y*...*......,..*..**.,.*,....*..*.*.....*...*...........*..
/* Initialization function: Initializes the values of genes
/* within the measurement's bounds (i.e. within 1 & m)
/ft,******.,**,************,*,*********,*************,,****

www.manaraa.com

61

for (i = 0; i < NVARS; i++)
{
for (j = 0; j < POPSIZE; j++)

{
population[j].fitness = 0 ;
population[j].rfitness = 0 ;
population[j].cfitness = 0 ;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i]

population[j].upper[i]);
}

}

/* Random value generator : Generates a value within bounds */
/,*,**,******,,,*******,,****,.**************,*******,,***,*/

int randval(int low, int high)
(
int val;
int lb = 0, ub = m-1;
double g05dyf_();
val = g05dyf_(&lb, &ub) ;
return(val);
}

/* Evaluation function: is the fitness function */
/* The smaller the AWT, the better fitness it will be */

void evaluate(void)
{
int mem;
int i ;
int der[k]; /* used to be dex[k] in rec.all.c */
double W[3] = (wl, w2};
double x[NVARS];
W [2] = w3 ;

for (mem = 0; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++){

x[i] = Dat[population[mem],gene[i]];
der[i] = Ind[population[mem].gene[i]];

}
population[mem].fitness = l/awt_rec(x, der, W);

}

}

/*************************,*************************************/

www.manaraa.com

62

/* Keep_the_best function: keep track of the best member of */
/* the population */

z

void keep_the_best()
{

int mem;
int i;
cur_best =0; /* stores the index of the best individual */

for (mem = 0; mem < POPSIZE; mem++)
{
if (population[mem].fitness > population[POPSIZE].fitness)

{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness ;
}

}
/* once the best member in the population is found, copy the genes */
for (i = 0; i < NVARS; i++)

population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

/* Elitist function: To make sure the generation gets better & */
/* better */

void elitist()
{

int i;
double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */

best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i)

(
if(population[i].fitness > population[i+1].fitness)

{
if (population[i].fitness >= best)

{
best = population!i].fitness;
best_mem = i;
}

if (population[i+1].fitness <= worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}

}
else

{

www.manaraa.com

63

if (population[i].fitness <= worst)
{
worst = population[i].fitness;
worst_mem = i;
}

if (population[i+1].fitness >= best)
(
best = population[i+1].fitness;
best_mem = i + 1;
}

}

}

/* if best individual from the new population is better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */

if (best >= population[POPSIZE].fitness)
{
for (i = 0; i < NVARS; i++)

population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness ;
}

else
(
for (i = 0; i < NVARS; i++)

population[worst_mem].gene[i] = population[POPSIZE],gene[i] ;
population[worst_mem] .fitness = population[POPSIZE].fitness ;
}

}

/* Selection function: select the member according to the */
/* fitness of each member */

void Select(void)
(
int mem, i, j;
double sum = 0 ;
double p;

/* find total fitness of the population */
for (mem = 0; mem < POPSIZE; mem++)

(
sum += population[mem].fitness;
}

/* calculate relative fitness */
for (mem = 0; mem < POPSIZE; mem++)

{
population[mem].rfitness = population[mem].fitness/sum;
}

population[0].cfitness = population[0].rfitness;

www.manaraa.com

64

/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++)

(
population[mem].cfitness = population[mem-1].cfitness +

population[mem].rfitness;
}

/* finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)
{
p = rand()%1000/1000.0 ;
if (p < population[0].cfitness)

newpopulation[i] = population[0];
else

(
for (j = 0; j < POPSIZE;j++)

if (p >= population[j].cfitness &&
p<population[j+1].cfitness)

newpopulation[i] = population[j+1];
}

}
/* once a new population is created, copy it back */

for (i = 0; i < POPSIZE; i++)
population[i] = newpopulation!i] ;

}

/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
y********

void crossover(void)
(
int i, mem, one ;
int first = 0; /* count of the number of members chosen */
double x;

for (mem = 0; mem < POPSIZE; ++mem)
{
x = rand()%1000/1000.0 ;
if (x < PXOVER)

{
++first;
if (first % 2 == 0)

Xover (one, mem) ;
else

one = mem;
}

}
}

/* Crossover: performs crossover of the two selected parents. */
y , * . * , * * * * , , * * * * * * , * * * * * * , * * * * , , . * . * * * ,

www.manaraa.com

65

void Xover(int one, int two)
{
int i;
int point; /* crossover point */

/* select crossover point */
if(NVARS > 1)

(
if(NVARS == 2)

point = 1;
else

point = (randO % (NVARS - 1)) + 1 ;

for (i = 0; i < point; i++)
swap(&population[one].gene[i], &population[two].gene[i]);

}
}

/* Swap: A swap procedure that helps in swapping 2 variables */

void swap(int *x, int *y)
(
int temp;

temp = *x;
*x = *y ;
*y = temp;

)

/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between 1 and m */

void mutate(void)
{
int i, j;
int 1bound, hbound;
double x;

for (i = 0; i < POPSIZE; i++)
for (j = 0; j < NVARS;]++)

(
x = rand()%1000/1000.0 ;
if (x < PMUTATION)

(
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);

www.manaraa.com

66

y***

/* Main function: follows as it is written
y *

*/

*/

*/

void main(void)
(
int i, iO, il;
int WT RANKfn g]; /* rank of WT*/
int j[n_g][k]; /* index of affordable points */

double WT[n_g]; /* the smallest ave.wtd.trace for n_g random starts*/

srand(seed);

for (i = 0; i < n_g; i*+)(
/* Get the Data and Indices */
get_dat (Dat, Ind);
generation = 0 ;
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)(

generation++;
Select();
crossover();
mutate();
evaluate();
elitist();

)
for (iO = 0; iO < k; i0++)

j[i][i0] = population[POPSIZE].gene[iO];
WT[i] = l/population[POPSIZE].fitness;

}
rank (WT, n_g, 'a', WT_RANK);
printf("Genetic Algorithm With %d Random Starts\n", n q);
printf("m = %d k= %d\n", m, k);
printf("POPSIZE = %d MAXGENS = %d PXOVER = %.2f PMUTATION = %.2f\n",

POPSIZE, MAXGENS, PXOVER, PMUTATION) ;

for (iO = 0; iO < n_g; i0++) {
printf("Points :\t");
for (il = 0; il < k; il++) printf("%d\t", j[WT_RANK[iO]][il]+1);
printf("\nSides\t");
for (il = 0; il < k; il++) printf("%d\t", Ind[j[WT_RANK[i0]][il]]);
printf("\nDat:\t");
for (il = 0; il < k; il++) printf("%.If\t", Dat[j[WT_RANK[iO]][il]])
printf("%f\n", WT[WT_RANK[i0]]);}

printf("\n");

www.manaraa.com

67

B.8. THE PROGRAM "EZ.s"

This S-plus program is for plotting E(Z„) versus n as discussed in Section 3.4.5. This

is the program for Triangle Shape, 0° Orientation, m = 20, k = 4. For other

shapes/orientations, one can change the data sets in this program to be other data sets

obtained from the ouput of ONE and GA.

n _ 10
#For One at a Time (TriO -- m = 20, k = 4, 400K Awt)
one _ matrix (scan("/home/gaby/Diss/Tri0/o20.4.tO.dat", multi.line=T),

ncol=9, byrow=T)[,9]
one _ one[one!=1.e6] # To eliminate the "(7) Not Invertible" Frequency
one _ as.factor(one) # make it to be character
one.freq _ table(one) # frequency table
one.wtrace _ as.numeric(names(one.freq)) # make it numeric
one.rel _ one.freq/sum(one.freq) # relative frequency
one.cum _ cumsum(one.rel) # cumulative frequency
one.tab _ cbind(one.freq, one.rel, one.cum) # combine to be 3 columns

one.k _ nrow(one.tab)
one.n _ n # No of EZ
one.Q _ matrix (NA, one.k, one.n)
one.Q[,l] _ one.rel

for (j in 2 :one.n)(
one.Q[l,j] _ 1 - (l-one.cum[l])A(2*j)
#one.Q[l,j] _ 1 - (l-one.cum[l])Aj
for (i in 2 : one.k)(

one.Q[i,j] _ (1 - one.cum[i-l])"(2*j) - (1 - one.cum[i])A(2*j)}}
#one.Q[i,j] _ (1 - one.cum[i-l])Aj - (1 - one.cum[i])Aj}}

one.EZ _ one.wtrace %*% one.Q
cat("One.EZ\n"); print(one.EZ, fill=T)

##** For GA (TriO — m = 20, k = 4, 400K Awt)
ga _ matrix (scan("/home/gaby/Diss/Tri0/g20.4.t0.dat", multi.line=T),

ncol=9, byrow=T)[,9]
ga _ ga[ga!=l.e6] # To eliminate the "(7) Not Invertible" Frequency
ga _ as.factor(ga) # make it to be character
ga.freq _ table(ga) * frequency table
ga.wtrace _ as.numeric(names(ga.freq)) # make it numeric
ga.rel _ ga.freq/sum(ga.freq) * relative frequency
ga.cum _ cumsum(ga.rel) # cumulative frequency
ga.tab _ cbind(ga.freq, ga.rel, ga.cum) # combine to be 3 columns

ga.k _ nrow(ga.tab)

www.manaraa.com

68

ga.n _ n * No of EZ
ga.Q _ matrix (NA, ga.k, ga.n)
ga.Q[,1] _ ga.rel

for (j in 2 :ga.n){
ga.Q[1,j] _ 1 - (l-ga.cum[l])"j
for (i in 2:ga.k){

ga.Q[i,j] _ (1 - ga.cum[i-l])Aj - (1 - ga.cum[i])Aj}}

ga.EZ _ ga.wtrace %*% ga.Q
cat("Ga.EZ\n"); print(ga.EZ, fill=T)

#plot one.E(Z) & ga.E(Z) table, Z = Min(Yl, ... , Yn)
tmotif()
plot(l:n, ylim=range(one.EZ, ga.EZ), xlab = "Computation Resource(GA)",

ylab="EZ", lty=l, type='n')
lines(l:n, one.EZ, lty=l)
lines(l:n, ga.EZ, lty=2)
legend(8, .52, c("One", "GA"), lty=l:2)
title("TriO, m=20 and k=4", cex=0.5)

B.9. THE PROGRAM "der.s"

Using this Splus program, the derivative functions referred to in Appendix B.4 at the

places marked "/* dfi/d(u,v,t) */" can be obtained. Before one runs this Splus

program, the necessary library needs to be attached. Once it is attached, the next time one

runs the program, it does not need to be attached again.

#assign(where = 0., "lib.loc", "/home/stat/bin/axp/splus/VR5.3")
#library (MASS, first=T)

dfn <- deriv(expr = f - (Y-v-ql*cos(t))*(cos(t)-
pl*sin(t))/(sin(t)+pl*cos(t))
+u-ql*sin(t),

namevec=c("u","v","t"),
function.arg=function(u,v,t, X)NULL)

www.manaraa.com

69

APPENDIX C. COMPUTER OUTPUTS

Presented here are several examples of output files from one of the 3 main programs

(exhaust.c, one.c, ga.c). Explanations of what the output files tell us will be given. For the

purpose of example, Triangle Shape, 0° Orientation for m = 20 and k = 4, and m = 20 and k =

8 cases are presented.

C.l. THE OUTPUT FILE utr20.4.t0"

The author recommends that any user who wants to use these program(s) name output

file(s) according to some consistent convention. As an example, the author saved the output

file from the program "exhaust.c" with the name "tr20.4.t0" where tr refers to triangle

exhaustive computation results, 20 refers to m, 4 refers to k, and tO refers to Triangle Shape

and 0° Orientation. The following output gives the 10 Best/Minimum AWTs from

Exhaustive Computation. After the 2 title lines, each 2 rows represent a design (ordered

from the best/smallest AWT to the tenth best AWT). On the row named "Points:" it shows

that for k = 4, the best choice for the first probe path is number 6, for the second probe path

the best choice is path number 11, and for the third and fourth paths the best choices are

number 20 where the path numbering is as in Figure 3.1. The "Sides" refers to which switch

(or derivative functions as in the program "der.h") are used and the last number on that

second row gives the AWT computed for that design (i.e., the design "6-11-20-20"). Finally,

the number on the bottom row of the output file (i.e., the number "4.285u") is the time (in

seconds) needed to run the program.

www.manaraa.com

70

Exausted Search
m=20 k=4

Points : 6 11 20 20

Sides 2 4 6 6 0. 438142
Points : 6 11 19 20
Sides 2 4 6 6 0. 484586
Points : 6 11 13 20
Sides 2 4 5 6 0. 485726
Points : 6 11 12 20
Sides 2 4 4 6 0. 519372
Points : 1 6 11 20
Sides 1 2 4 6 0. 532119
Points : 6 11 18 20
Sides 2 4 6 6 0. 532949
Points : 6 11 11 20
Sides 2 4 4 6 0. 550391
Points : 6 10 11 20

Sides 2 3 4 6 0. 563399
Points : 6 11 13 19
Sides 2 4 5 6 0. 563458
Points : 6 11 14 20
Sides 2 4 5 6 0. 565163

4.285u 0 ,061s 0: : 04.84 89.6% 0 + 6k 3+4io Opf+Ow

C.2. THE OUTPUT FILE Htr20.8.t0"

The following is the output file for the same object and parameters described above,

except the design size is changed to k = 8.

Exausted Search
m=20 k=8

Points : 6 11 11 11 20 20 20 20

Sides 2 4 4 4 6 6 6 6 0.193954
Points : 6 11 11 12 20 20 20 20
Sides 2 4 4 4 6 6 6 6 0 .200564

Points : 6 11 11 11 19 20 20 20
Sides 2 4 4 4 6 6 6 6 0 .204455

Points : 6 11 11 11 13 20 20 20
Sides 2 4 4 4 5 6 6 6 0 .204837

Points : 6 11 11 20 20 20 20 20

Sides 2 4 4 6 6 6 6 6 0 .206664
Points : 6 11 11 11 12 20 20 20

Sides 2 4 4 4 4 6 6 6 0 .206823
Points : 6 11 11 12 19 20 20 20
Sides 2 4 4 4 6 6 6 6 0.210351
Points : 6 11 11 12 13 20 20 20
Sides 2 4 4 4 5 6 6 6 0.211328

www.manaraa.com

71

Points : 6 11 11 15 20 20 20 20

Sides 2 4 4 5 6 6 6 6 0.211531

Points : 6 11 11 11 11 20 20 20

Sides 2 4 4 4 4 6 6 6 0.212662

1941.798u 6 ,089s 1:25: : 01.18 38.1% 0+957k 19+5io Opf+Ow

www.manaraa.com

72

APPENDIX D. FIGURES PORTRAYING SOME DESIGNS

In this Appendix, figures portraying the best designs found by direct enumeration (via

the program "exhaust.c" as in Appendix B) for "small" and "medium" (m, k) combinations

are displayed in Sections D.l through D.7. Sections D.8 through D.23 give figures for best

designs found by ONE and GA where no direct enumeration was possible (i.e., for the

"large" (m, k) combination).

www.manaraa.com

73

D.l. TRIANGLE, 45° ORIENTATION

Figure D.l shows the Triangle, 45° Orientation case for both "small" and "medium"

(m, k) combinations, i.e., (m, k) = (20, 4) and (20, 8). In Figure D.l, the symbol "[2X]"

represents repetition of the probe path for k = 4, while the symbols "(IX)", "(2X)", "(5X)"

represent how many times those probe paths are employed for k = 8. Apparently, as k

increases from 4 to 8 points, the best paths are being repeated.

Z \
Side 3

V J

[IX]
(2X)

Side 4 Side 2

[IX]
(IX)

Side I

(5X)

[2X1

Figure D.l. Best Designs for Triangle Shape, 45° Orientation, and "Small'VMedium"
(m, k) Combinations; Nominal Position (0 = 0) Shown

www.manaraa.com

74

D.2. RECTANGLE, 0° ORIENTATION

Figure D.2 shows best designs for the Rectangle, 0° Orientation case for both "small"

and "medium" (m, k) combinations, i.e., (m, k) = (20, 4) and (20, 8). As before, [] indicates

repetition of paths for the k = 4 case and () indicates repetition of paths for the k = 8 case.

[IX]
(IX)

Z \
Side 3

11

(IX)- -£>• 10

Side 2

(2X)
[IX]

-^6

15

204KH

5

-s-

16

(IX)
[IX]

Side 4

(2X)
[1X1

Side 1

(IX)

Figure D.2. Best Designs for Rectangle Shape, 0° Orientation, and "Small'V'Medium"
(m, k) Combinations; Nominal Position (J$ = 0) Shown

www.manaraa.com

75

D.3. RECTANGLE, 45° ORIENTATION

Figure D.3 shows the Rectangle, 45° Orientation case for both "small" and "medium"

(m, k) combinations, i.e., (m, k) = (20,4) and (20, 8).

(IX) (IX)

[Side]]

(IX)
(IX)

(Side 2) (Side 4)

(IX)

[IX]
(IX)

[IX]

(Side l)

(IX)

[IX]
(IX)

[IX]

Figure D.3. Best Designs for Rectangle Shape, 45° Orientation, and "Small'V'Medium"
(m, k) Combinations; Nominal Position (J) = 0) Shown

www.manaraa.com

76

D.4. HOOD SHAPE, 0° ORIENTATION

Figure D.4 shows the Hood Shape, 0° Orientation case for both "small" and

"medium" (m, k) combinations, i.e., (m, k) = (20,4) and (20, 8).

(IX)
[IX]

(IX)

[1X1 (side 3

•* l (IX)

[1X1

(5X)

[1X1

Side 4 Side 2

(Side l)

Figure D.4. Best Designs for Hood Shape, 0° Orientation, and "SmairVMedium"
(m, k) Combinations; Nominal Position (J3 = 0) Shown

www.manaraa.com

77

D.5. HOOD SHAPE, 45° ORIENTATION

Figure D.5 shows the Hood Shape, 45° Orientation case for both "small" and

"medium" (m, k) combinations, i.e., (m, k) = (20,4) and (20, 8).

(IX)

(IX)

Figure D.5. Best Designs for Hood Shape, 45° Orientation, and "Small'7"Medium"
(m, k) Combinations; Nominal Position (j) =0) Shown

www.manaraa.com

78

D.6. PARABOLAS SHAPE, 0° ORIENTATION

Figure D.6 shows the Parabolas Shape, 0° Orientation case for both "small" and

"medium" (m, k) combinations, i.e., (m, k) = (20,4) and (20, 8).

(3X)

(IX)

[IX]
(2X)
[IX]

(Side 2

(IX)
[IX]

(IX)

(Side 1

[IX]

Figure D.6. Best Designs for Parabolas Shape, 0° Orientation, and "SmairVMedium"
(m, k) Combinations; Nominal Position (£ = 0) Shown

www.manaraa.com

79

D.7. PARABOLAS SHAPE, 45° ORIENTATION

Figure D.7 shows the Parabolas Shape, 45° Orientation case for both "small"

"medium" (m, k) combinations, i.e., (m, k) = (20,4) and (20, 8).

(IX)

ÇsïdeT)

[IX]
(2X) (IX)

Side 3)

(IX)

[IX]

(IX) (2X)

[IX] [IX]

Figure D.7. Best Designs for Parabolas Shape, 45° Orientation, and "Small7"Medium
(m, k) Combinations; Nominal Position (0 = 0) Shown

www.manaraa.com

80

D.8. TRIANGLE SHAPE, 0° ORIENTATION

Figure D.8 portrays the best design found by GA for the Triangle Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(2X) (2X) (2X) (2X)

r 1. -2S1 si V, _ V 31

Side 3

(2X)

(IX)

Side 2 Side 4

(IX)

(2X)

(2X)

z-
Side 1

Figure D.8. The Best Design Found by GA for the Triangle Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (J3 = 0) Shown

www.manaraa.com

81

D.9. TRIANGLE SHAPE, 0° ORIENTATION

Figure D.9 portrays the best design found by ONE for the Triangle Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

Side 3 (5X) (3X) (3X)

Side 2

(2X)

(3X)

Side 1

Figure D.9. The Best Design Found by ONE for the Triangle Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

82

D.IO. TRIANGLE SHAPE, 45° ORIENTATION

Figure D.IO portrays the best design found by GA for the Triangle Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(IX)

25,

Side 3

Side 2

Side 4

Side 1

Figure D.IO. The Best Design Found by GA for the Triangle Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

D.ll. TRIANGLE SHAPE, 45° ORIENTATION

Figure D.l 1 portrays the best design found by ONE for the Triangle Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

Z \
Side 3

(3X)

Side 4 Side 2

(IX)

Side I
(6X) (6X)

Figure D.ll. The Best Design Found by ONE for the Triangle Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

84

D.12. RECTANGLE SHAPE, 0° ORIENTATION

Figure D.12 portrays the best design found by GA for the Rectangle Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(2X)

(2X)

(IX)

21

% 20

Side 3

40 4#
(IX)

Side 2 Side 4

(2X)
II

7

33<N-
(IX)

9 10

(2X) Side 1 (IX) (IX) (3X)

Figure D.12. The Best Design Found by GA for the Rectangle Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

85

D.13. RECTANGLE SHAPE, 0° ORIENTATION

Figure D.13 portrays the best design found by ONE for the Rectangle Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(IX)

,-4
(3X)

21

20

Side 2

(3X)
-&# 11

(3X)

Side 3

Side 1

(IX)

30 (IX)
40 Ad-

Side 4

(IX)

L03 l f

(3X)

Figure D.13. The Best Design Found by ONE for the Rectangle Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

86

D.14. RECTANGLE SHAPE, 45° ORIENTATION

Figure D.14 portrays the best design found by GA for the Rectangle Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(2X) (IX) (3X)
(side 3)

(2X) (IX)

(Side 4)
(Side 2)

(IX)

(IX)

(IX)

K'
(Side l)

(IX) (2X) (IX)

Figure D.14. The Best Design Found by GA for the Rectangle Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

87

D.15. RECTANGLE SHAPE, 45° ORIENTATION

Figure D.15 portrays the best design found by ONE for the Rectangle Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(2X) (2X)

(Side 3)

(2X) (2X)

(Side 2) (Side 4)

(2X) (2X)

(2X) (2X)

Figure D.15. The Best Design Found by ONE for the Rectangle Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

88

D.16. HOOD SHAPE, 0° ORIENTATION

Figure D.16 portrays the best design found by GA for the Hood Shape, 0° Orientation

case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was possible.

(side 3) (IX) <2X)

(IX)

(3X) (3X)

(IX)

(2X)

(IX)

Side 2 Side 4

(side l]

Figure D.16. The Best Design Found by GA for the Hood Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

89

D.17. HOOD SHAPE, 0° ORIENTATION

Figure D.17 portrays the best design found by ONE for the Hood Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(side 3 (IX) (IX)

(2X) (IX)

(I IX)

Side 4 Side 2

(Side Q

Figure D.17. The Best Design Found by ONE for the Hood Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

D.18. HOOD SHAPE, 45° ORIENTATION

Figure D.18 portrays the best design found by GA for the Hood Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(Side 3)

(2X) (IX) (IX) (IX)
V 30

(3X)
(IX)

(IX)

— (IX)

(IX)

— (IX)

(Side 4) (Side 2

(Side 1)
(IX)

Figure D.18. The Best Design Found by GA for the Hood Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

91

D.19. HOOD SHAPE, 45° ORIENTATION

Figure D.19 portrays the best design found by ONE for the Hood Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(Side 3)
(3X) (3X)

30 V

(6X) (2X)

(Side 2 (Side 4)

(Side Q (2X)

Figure D.19. The Best Design Found by ONE for the Hood Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

D.20. PARABOLAS SHAPE, 0° ORIENTATION

Figure D.20 portrays the best design found by GA for the Parabolas Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(IX)

._2_2i
(2X) (2X)

(IX)

(Side 4)

(IX)

(2X) (2X)

(Side 1
(IX) (IX)

Figure D.20. The Best Design Found by GA for the Parabolas Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (J3 =0) Shown

www.manaraa.com

93

D.21. PARABOLAS SHAPE, 0° ORIENTATION

Figure D.21 portrays the best design found by ONE for the Parabolas Shape, 0°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(5X)

(3X) (3X)

(Side 2

(3X) (2X)

(Side l)

Figure D.21. The Best Design Found by ONE for the Parabolas Shape, 0° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

94

D.22. PARABOLAS SHAPE, 45° ORIENTATION

Figure D.22 portrays the best design found by GA for the Parabolas Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(IX) (IX)

(2X) (3X)
(Side 3

Side 4)
(Side 2

(IX)

(2X) (2X)

(IX) (2X) (IX)

Figure D.22. The Best Design Found by GA for the Parabolas Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

95

D.23. PARABOLAS SHAPE, 45° ORIENTATION

Figure D.23 portrays the best design found by ONE for the Parabolas Shape, 45°

Orientation case for "large" (m, k), i.e., (m, k) = (40, 16) where no direct enumeration was

possible.

(2X) (4X)

(side 4
(Side 2

(2X)
(2X)

(3X) (3X)

Figure D.23. The Best Design Found by ONE for the Parabolas Shape, 45° Orientation,
and "Large" (m, k) Case; Nominal Position (0 = 0) Shown

www.manaraa.com

96

APPENDIX E. GRAPHS (ONE VERSUS GA)

The following are the graphs of E(Zn) versus n for both ONE and GA as discussed in

Section 3.4.5. Figure E.l is for various combinations of orientations and (m, k) for the

Triangle Shape. Figure E.2 is for the Rectangle Shape. Figure E.3 is for the Hood Shape.

Figure E.4 is for the Parabolas Shape.

www.manaraa.com

97

TriO, m=20 and k=4 Tri45, m=20 and k=4

2 4 6 a 10

Computation Aesource(GA)

TriO, m=20 and k=8

2 4 6 8

Computation Resource GA)

Tri45, m=20 and k=8

2 4 6 8 10

Conputatton Resource(GA)

TriO, m=40 and k=16

4 6

Computation Aesource(GA)

Tri45, m=40 and k=16

2 * 6 8
Computation Resource(GA)

2 4 6 8

Computation Resourc8(GA)

Figure E.l. E(Z„) versus n (Triangle Shape combinations)

www.manaraa.com

98

RecO, m=20 and k=4 Rec45, m=20 and k=4

a s

2 « 6 a to

Computation Resoufce(GA)

RecO, m=20 and k=8

2 4 6 8

Computation ResourcetGA)

Rec45, m=20 and k=8

2 4 6

Computation Aesouree(GA)

RecO, m =40 and k=16

5 10 15

Computation Aesource<GA)

Rec45, m=40 and k=16

2 4 6

Computatkm Resource(GA)

2 4 6 8

Computation Resourcs(GA)

Figure E.2. E(Zn) versus n (Rectangle Shape combinations)

www.manaraa.com

99

HoodO, m=20 and k=4 Hood45, m=20 and k=4

2 4 6 8

Computation Resource(GA)

HoodO, m=20 and k=8

2 4 6 0

Computation Resource<GA)

Hood45, m=20 and k=8

5 tO 15

Computation Resource GA)

HoodO, m =40 and k=16

2 4 6 8

Computation Resource(GA)

Hood45, m=40 and k=16

5 10 15

Computation Resource GA)

5 10 15

Computation Resource(GA)

Figure E.3. E(Zn) versus n (Hood Shape combinations)

www.manaraa.com

100

ParO, m=20 and k=4 Par45, m=20 and k=4

2 4 6 8

Computation Resource(GA)

ParO, m=20 and k=8

2 4 6 a to

Computation ResourcetGA)

Par45, m=20 and k=8

2 4 6

Computation Resource(GA)

ParO, m=40 and k=16

3 8

5 10 IS

Computation Resource(GA)

Par45, m =40 and k=16

Computation flesource(GA)

2 4

Computation Resource(GA)

Figure E.4. E(Z„) versus n (Parabolas Shape combinations)

www.manaraa.com

101

BIBLIOGRAPHY

Dowling, MM, Griffin, P.M., Tsui, K.- L., Zhou.C. (1997), "Statistical Issues in Geometric

Feature Inspection Using Coordinate Measuring Machines," Technometrics, Vol.39,

No.l, pp.3-17.

Hulting, F.L. (1992), "Methods for the Analysis of Coordinate Measurement Data,"

Computing Science and Statistics, Vol.24, pp. 160-169.

Hulting, F. L. (1995), "Comment: An Industry View of Coordinate Measurement Data

Analysis," Statistica Sinica, Vol.5, pp. 191-204.

Hulting, F.L. (1997), " Comment on Statistical Issues in Geometric Feature Inspection Using

Coordinate Measuring Machines," Technometrics, Vol.39, No.l, pp. 18-20.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs,

Third Edition. Springer-Verlag, Berlin, Heidelberg, and New York.

Seber, G. A. F., and Wild, C. J. (1989). Nonlinear Regression. John Wiley &

Sons Inc., New York.

Wang, Y., Gupta, S., Hulting, F.L., Fussell, P S. (1998), " Manufactured Part Modeling for

Characterization of Geometric Variations of Automotive Spaceframe Extrusions,"

Journal of Manufacturing Science and Engineering, Vol.120, August 1998, pp.523-

531.

	2001
	Statistical modeling and design for CMM-type data locating known two-dimensional geometries
	Dewi Rahardja
	Recommended Citation

	tmp.1410204246.pdf.PbWjY

